C O M M U N I C A T I O N S
ozonolysis and Horner-Wadsworth-Emmons25 olefination af-
forded unsaturated ester 24, an inseparable mixture of isomers
(∆10′′,11′′ E/Z, 91:9)). Subsequently, DIBAL-H reduction fol-
lowed by chromatographic separation of the geometrical isomers
and oxidation afforded aldehyde (E,E)-5 in 84% yield (four
steps).
The enantioselective allylation of 5 using chiral bisphosphora-
mide (R,R)-2617 smoothly provided 27 in good yield and excellent
diastereomeric selectivity (88%, dr 96/4). The expected C(7′′) S
configuration was confirmed by analysis of Mosher esters.26 Olefin
metathesis with acrolein using Grubbs’ second generation catalyst,27
and protection of the C(7′′) hydroxyl group with TES-Cl gave 29
(91%, two steps). The synthesis of 2 was completed by Wittig
olefination and saponification with potassium trimethylsilanoate28
in excellent yield (90%, two steps).
The coupling of fragments 2 and 20 was achieved via the mixed
anhydride of acid 1 from 2,4,6-trichlorobenzoyl chloride29 and
DMAP in good yield (87%) (Scheme 6). Global deprotection
proceeded smoothly with HF/Et3N (60:40 ratio) in DMSO to afford
papulacandin D (89% yield). Synthetic papulacandin D exhibited
spectroscopic and physical properties identical to those reported
for the natural and synthetic material (1H NMR, 13C NMR, HRMS,
optical rotation, UV-vis).1,13
spectra. This material is available free of charge via the Internet at
References
(1) Isolation: (a) Traxler, P.; Gruner, J.; Auden, J. A. J. Antibiot. 1977, 30,
289-296. Structural characterization: (b) Traxler, P.; Frittz, H.; Richter,
W. J. HelV. Chim. Acta 1977, 60, 578-584. (c) Traxler, P.; Fritz, H.;
Fuhrer, H.; Richter, W. J. Antibiotics 1980, 33, 967-978.
(2) (a) Pe´rez, P.; Varona, R.; Garcia-Acha, I.; Dura´n, A. FEBS Lett. 1981,
129, 249-252. (b) Varona, R.; Pe´rez, P.; Dura´n, A. FEMS Microbiol.
Lett. 1983, 20, 243-247. (c) Baguley, B. C.; Rommele, G.; Gruner, J.;
Wehrli, W. Eur. J. Biochem. 1979, 97, 345-351. (d) Debono, M.; Gordee,
R. S. Annu. ReV. Microbiol. 1994, 48, 471-497. (e) Schmatz, D. M.;
Romancheck, M. A.; Pittarelli, L. A.; Schwartz, R. E.; Fromtling, R. A.;
Nollstadt, K. H.; Vanmiddlesworth, F. L.; Wilson, K. E.; Turner, M. J.
Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 5950-5954.
(3) Danishefsky, S.; Phillips, G.; Ciufolini, M. Carbohydrate Res. 1987, 171,
317- 327.
(4) (a) Balachari, D.; O’Doherty, G. A. Org. Lett. 2000, 2, 863-866. (b)
Balachari, D.; O’Doherty, G. A. Org. Lett. 2000, 2, 4033-4036. (c)
Ahmed, M. M.; O’Doherty, G. A. Tetrahedron Lett. 2005, 46, 4151-
4155.
(5) McDonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc.
1995, 117, 6605-6606.
(6) Schmidt, R. R.; Frick, W. Tetrahedron 1988, 44, 7163-7169.
(7) (a) Barrett, A. G. M.; Pen˜a, M.; Willardsen, J. A. J. Chem. Soc., Chem.
Commun. 1995, 1145-1146, (b) Barrett, A. G. M.; Pen˜a, M.; Willardsen,
J. A. J. Chem. Soc., Chem. Commun. 1995, 1147-1148.
(8) Rosenblum, S. B.; Bihovsky, R. J. Am. Chem. Soc. 1990, 112, 2746-
2748.
(9) Czernecki, S.; Perlat, M.-C. J. Org. Chem. 1991, 56, 6289-6292.
(10) Parker, K. A.; Georges, A. T. Org. Lett. 2000, 2, 497-499.
(11) (a) Friesen, R. W.; Sturnio, C. F. J. Org. Chem. 1990, 55, 2572-2574.
(b) Friesen, R. W.; Sturnio, C. F. J. Org. Chem. 1990, 55, 5808-5810.
(c) Friesen, R. W.; Sturnio, C. F.; Daljeet, A. K.; Kolaczewska, A. J.
Org. Chem. 1991, 56, 1944-1947. (d) Friesen, R. W.; Loo, R. W. J.
Org. Chem. 1991, 56, 4821-4825.
Scheme 6 a
(12) (a) Dubois, E.; Beau, J.-M. J. Chem. Soc., Chem. Commun. 1990, 1191-
1192. (b) Dubois, E.; Beau, J.-M. Tetrahedron Lett. 1990, 31, 5165-
5168. (c) Dubois, E.; Beau, J.-M. Carbohydr. Res. 1992, 223, 157-167.
(13) Barrett, A. G. M.; Pen˜a, M.; Willardsen, J. A. J. Org. Chem. 1996, 61,
1082-1100.
(14) (a) Denmark, S. E.; Sweis, R. F. In Metal-Catalyzed Cross-Coupling
Reactions; de Meijere, A., Diederich, F., Eds.; Wiley-VCH: Weinheim,
Germany, 2004; pp 163-216. (b) Denmark, S. E.; Yang, S.-M. In
Strategies and Tactics in Organic Synthesis; Harmata, M. A., Ed.;
Elsevier: Amsterdam, 2005; Vol. 6, Chapter 4.
(15) Denmark, S. E.; Neuville, L. Org. Lett. 2000, 2, 3221-3224.
(16) Denmark, S. E.; Baird, J. D. Chem.sEur. J. 2006, 12, 4954-4963.
(17) (a) Denmark, S. E.; Fu, J.; Coe, D. M.; Su, X.; Pratt, N.; Griedel, B. D.
J. Org. Chem. 2006, 71, 1513-1522. (b). Denmark, S. E.; Fu, J.; Lawler,
M. J. J. Org. Chem. 2006, 71, 1523-1536.
(18) Roth, W.; Pigman, W. Methods Carbohydr. Chem. 1963, 2, 405-408.
(19) (a) Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 4871-4874.
(b) Trost, B. M.; Caldwell, C. D. Tetrahedron Lett. 1981, 22, 4999-
5002.
(20) Lee, M.; Ko, S.; Chang, S. J. Am. Chem. Soc. 2000, 122, 12011-12012.
(21) Epoxidation proceeded selectively from the R-face, which is consistent
with results on similar systems; see: (a) Nicolaou, K. C.; Hwang, C.-K.;
Duggan, M. E. J. Chem. Soc., Chem. Commun. 1986, 925-926. (b)
Hanessian, S.; Martin, M.; Desai, R. C. J. Chem. Soc., Chem. Commun.
1986, 926-927. In addition, isomerization was not observed upon
exposure of pure 16â to mCPBA under the reaction conditions, suggesting
that trapping of the oxocarbenium ion is under kinetic control. Isomer
16â could be converted to 16R by treatment with 0.1 M HCl in CHCl3
(see Supporting Information).
(22) Gioeli, C.; Balgobin, N.; Josephson, S.; Chattopadhyaya, J. B. Tetrahedron
Lett. 1981, 22, 969-972.
(23) Commercially available geraniol was enriched by spinning-band distil-
lation, (GC analysis, 99.8% geraniol/0.2% nerol)
(24) (a) Takaya, H.; Ohta, T.; Inoue, S.-I.; Tokunaga, M.; Kitamura, M.; Noyori,
R. Org. Synth., Coll. Vol. 9, 1998, 169-175. (b) Takaya, H.; Ohta, T.;
Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Inoue, S.; Kasahara, I.;
Noyori, R. J. Am. Chem. Soc. 1987, 109, 1596-1597.
(25) Yamazaki, N.; Dokoshi, W.; Kibayashi, C. Org. Lett. 2001, 3, 193-196.
(26) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512-519. (b)
Seco, J. M.; Quinoa, E.; Riguera, R. Chem. ReV. 2004, 104, 17-117. (c)
See Supporting Information.
(27) (a) Grubbs’ 2nd generation catalysts: (1,3-bis-(2,4,6-trimethylphenyl)-2-
imidazolidinylidene)dichloro(phenylmethylene)(tricyclohexylphos-phine)-
ruthenium. (b) Lautens, M.; Maddes, M. L. Org. Lett. 2004, 6, 1883-
1886. (c) BouzBouz, S.; Simmons, R.; Cossy, J. Org. Lett. 2004, 6, 3465-
3467. (d) Chatterjee, A. K.; Morgan, J. P.; Scholl, M.; Grubbs, R. H. J.
Am. Chem. Soc. 2000, 122, 3783-3784. (e) Chatterjee, A. K.; Choi, T.-
L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 11360-
11370.
(28) Langanis, E. D.; Chenard, B. L. Tetrahedron Lett. 1984, 25, 5831-5834.
(29) Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1979, 52, 1989-1993.
a Conditions: (a) 2,4,6-Cl3C6H2COCl, Et3N, room temp, 1 h, 20, toluene,
room temp, 3 h, 87%; (b) HF‚Et3N (60:40 ratio), DMSO, 60 °C, 15 h,
89%.
In conclusion, papulacandin D has been synthesized by a
convergent synthetic strategy that features a silicon-based, cross-
coupling reaction to construct the key spirocyclic C-aryl glycopy-
ranoside 16 and an enantioselective allylation reaction using a chiral
bisphosphoramide for the construction of the C(7′′) stereocenter.
The application of palladium-catalyzed, silicon-based, cross-
coupling reactions in the synthesis of more complex molecules is
currently under investigation.
Acknowledgment. We are grateful to the National Institutes
of Health for generous financial support (Grant R01 GM63167).
We are grateful to Prof. A. G. M. Barrett for kindly providing
spectra of synthetic papulacandin D.
Supporting Information Available: Detailed experimental pro-
cedures, full characterization of all products, and comparison NMR
JA070071Z
9
2776 J. AM. CHEM. SOC. VOL. 129, NO. 10, 2007