Synthesis of Trichostatin A
FULL PAPERS
(1H, d, J=7.5 Hz), 2.91 (6H, s), 2.81 (1H, m), 1.72 (3H, s),
0.76 (3H, d, J=6.3 Hz).
kind, P. A. Marks, Proc. Natl. Acad. Sci. USA 1998, 95,
3003; c) R. Furumai, Y. Komatsu, N. Nishino, S. Khoch-
bin, M. Yoshida, Proc. Natl. Acad. Sci. USA 2001, 98,
87; d) A. Saito, T. Yamashita, Y. Mariko, Y. Nosaka, K.
Tsuchiya, T. Ando, T. Suzuki, T. Tsuruo, O. Nakanishi,
Proc. Natl. Acad. Sci. USA 1999, 96, 4592; e) K. M. Ko-
eller, S. J. Haggarty, B. D. Perkins, I. Leykin, J. C.
Wong, M.-C. J. Kao, S. L. Schreiber, Chem. Biol. 2003,
10, 397; f) S. J. Haggarty, K. M.; Koeller, J. C. Wong,
C. M. Grozinger, S. L. Schreiber, Proc. Natl. Acad. Sci.
USA 2003, 100, 4389; g) J. C. Wong, R. Hong, S. L.
Schreiber, J. Am. Chem. Soc. 2003, 125, 5586.
Trichostatin A (1)
To a solution of compound 3 in dioxane (5 mL) was added
dropwise DDQ (0.10m in dioxane). The reaction process
was monitored by TLC to avoid addition of excess DDQ.
When compound 3 has disappeared, about 2.6 mL of DDQ
(0.26 mmol, 0.59 equivs.) had been consumed. The resulting
pale mixture was filtered and washed with dioxane. The or-
ganic layer was concentrated under reduced pressure and
purified by silica gel column chromatography (CH2Cl2/
MeOH, 20/1) to give a yellow solid; yield: 65 mg (49% in
two steps); mp 140–1438C; [a]2D1: +1068 (c 0.095, EtOH); IR
(KBr): n=3423, 3232, 2924, 1655, 1595, 1547, 1375, 1244,
[4] I. Fleming, J. Iqbal, E. P. Krebs, Tetrahedron 1983, 39,
841.
[5] K. Mori, K. Koseki, Tetrahedron 1988, 44, 6013.
[6] For selected recent reviews of organocatalysis, see:
a) A. Berkessel, H. Groger, Asymmetric Organocataly-
sis – From Biomimetic Concepts to Applications in
Asymmetric Synthesis Wiley-VCH, Weinheim, Germa-
ny, 2005; b) P. I. Dalko, L. Moisan, Angew. Chem. 2001,
113, 3840; Angew. Chem. Int. Ed. 2001, 40, 3726; c) P. I.
Dalko, L. Moisan, Angew. Chem. 2004, 116, 5248;
Angew. Chem. Int. Ed. 2004, 43, 5138.
[7] For l-proline-promoted aldol reactions, see: a) B. List,
R. A. Lerner, C. F. Barbas, III, J. Am. Chem. Soc.
2000, 122, 2395; b) K. Sakthivel, W. Notz, T. Bui, C. F.
Barbas, III, J. Am. Chem. Soc. 2001, 123, 5260; c) R.
Thayumanavan, F. Tanaka, C. F. Barbas, III, Org. Lett.
2004, 6, 3541; d) A. B. Northrup, D. W. C. MacMillan, J.
Am. Chem. Soc. 2002, 124, 6798; e) D. Enders, C.
Grondal, Angew. Chem. 2005, 117, 1235; Angew. Chem.
Int. Ed. 2005, 44, 1210; f) J. Casas, M. Engqvist, I. Ibra-
hem, B. Kaynak, A. Córdova, Angew. Chem. 2005, 117,
1367; Angew. Chem. Int. Ed. 2005, 44, 1343; g) Q. Pan,
B. Zou, Y. Wang, D. Ma, Org. Lett. 2004, 6, 1009; h) S.
Chandrasekhar, C. Narsihmulu, R. Reddy, S. S. Sultana,
Chem. Commun. 2004, 2450; i) A. B. Northrup,
D. W. C. MacMillan, Science 2004, 305, 1752; j) J. T.
Suri, D. B. Ramachary, C. F. Barbas, III, Org. Lett.
2005, 7, 1383.
1188, 1171, 1059, 974, 824 cmꢀ1
;
1H NMR (300 MHz,
CDCl3): d=7.85 (2H, d, J=9.0Hz), 7.20 (1H, d, J=
15.6 Hz), 6.66 (2H, d, J=9.0Hz), 5.96 (1H, d, J=9.9 Hz),
5.78 (1H, d, J=15.9 Hz), 4.41 (1H, m), 3.08 (6H, s), 1.90
(3H, s), 1.30(3H, d, J=6.6 Hz); 13C NMR (100 MHz,
CDCl3:CD3OD=7.5:1): d=199.5, 165.0, 153.5, 144.8, 139.9,
132.5, 130.5, 123.2, 115.2, 110.5, 40.4, 39.6, 17.5, 12.2; MS
(EI): m/z=302 [M+], 287 (0.6), 274 (3.5), 148 (100); HRMS
(EI): m/z=302.1621, calcd. for C17H22N2O3 (M+): 302.1630;
Daicel CHIRALPAK AS-H, hexane/EtOH, 50:50 with
0.1% TFA, flow rate 0.5 mLminꢀ1
, l=254 nm, tR =
14.78 min (major), minor one is not observed,>99% ee.
Acknowledgements
We are grateful for the financial support from the Depart-
ment of Medicinal Chemistry, School of Pharmacy, East
China University of Science & Technology. We also thank
Mr. Jian Wang for his help with the chiral HPLC analysis.
[8] For proline derivatives-catalyzed aldol reactions, see:
a) N. Mase, F. Tanaka, C. F. Barbas III, Angew. Chem.
2004, 116, 2474; Angew. Chem. Int. Ed. 2004, 43, 2420;
b) M. Nakadai, S. Saito, H. Yamamoto, Tetrahedron
2002, 58, 8167; c) Z. Tang, F. Jiang, L.-T. Yu, X. Cui,
L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang, Y.-D. Wu, J. Am.
Chem. Soc. 2003, 125, 5262; d) P. Krattiger, R. Kovasy,
J. D. Revell, S. Ivan, H. Wennemers, Org. Lett. 2005, 7,
1101; e) H. Torii, M. Nakadai, K. Ishihara, S. Saito, H.
Yamamoto, Angew. Chem. 2004, 116, 2017; Angew.
Chem. Int. Ed. 2004, 43, 1983; f) A. J. A. Cobb, D. M.
Shaw, D. A. Longbottom, S. V. Ley, Org. Biomol.
Chem. 2005, 3, 84; g) Y. Hayashi, T. Sumiya, J. Takaha-
shi, H. Gotoh, T. Urushima, M. Shoji, Angew. Chem.
2006, 117, 972; Angew. Chem. Int. Ed. 2006, 45, 958;
h) S. Samanta, J. Liu, R. Dodda, C.-G. Zhao, Org. Lett.
2005, 7, 5221; i) Z. Tang, Z.-H. Yang, X.-H. Chen, L.-F.
Cun, A.-Q. Mi, Y.-Z. Jiang, L.-Z. Gong, J. Am. Chem.
Soc. 2005, 127, 9285; j) S. S. Chimni, D. Mahajan,
V. V. S. Babu, Tetrahedron Lett. 2005, 46, 5617; k) E.
Bellis, K. Vasilatou, G. Kokotos, Synthesis 2005, 2407;
l) J.-R. Chen, H.-H. Lu, X.-Y. Li, L. Cheng, J. Wan, W.-
References
[1] For recent reviews related to biological functions and
applications of HDACs, see: a) A. Yarnell, Chem. Eng.
News 2006, 84, 43; b) P. A. Marks, V. M. Richon, R.
Breslow, R. A. Rifkind, Curr. Opin. Oncol. 2001, 13,
477; c) P. A. Marks, R. A. Rifkind, V. M. Richon, R.
Breslow, T. Miller, W. K. Kelly, Nat. Rev. Cancer 2001,
1, 194; d) M. Yoshida, A. Matsuyama, Y. Komatsu, N.
Nishino, Curr. Med. Chem. 2003, 10, 2351; e) M. Jung,
Curr. Med. Chem. 2001, 8, 1505; f) G. Bouchain, D. De-
lorme, Curr. Med. Chem. 2003, 10, 2359; g) V. Tamara,
P. Peggy, E. Greetje, R. Vera, Curr. Med. Chem. 2004,
11, 1629.
[2] M. Yoshida, M. Kijama, M. Akita, T. Beppu, J. Biol.
Chem. 1990, 265, 17174.
[3] For selected examples using trichostatin A as a tool for
studying biological functions of HDACs and drug dis-
covery, see: a) M. S. Finnin, J. R. Donigian, A. Cohen,
V. M. Richon, R. A. Rifkind, P. A. Marks, R. Breslow,
N. P. Pavletich, Nature 1999, 401, 188; b) V. M. Richon,
S. Emiliani, E. Verdin, Y. Webb, R. Breslow, R. A. Rif-
Adv. Synth. Catal. 2006, 348, 1228 – 1234
ꢁ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1233