2 H. Xu, R. Hong, T. Lu, O. Uzun and V. M. Rotello, J. Am. Chem.
Soc., 2006, 128, 3162.
3 J. M. Lehn, Supramolecular Chemistry, VCH, Weinheim, Germany,
1995; D. Philp and J. F. Stoddart, Angew. Chem., Int. Ed. Engl., 1996,
35, 1155; L. J. Prins, D. N. Reinhoudt and P. Timmerman, Angew.
Chem., Int. Ed., 2001, 40, 2382; W.-Y. Sun, M. Yoshizawa,
T. Kusukawa and M. Fujita, Curr. Opin. Chem. Biol., 2002, 6, 757.
4 L. Brunsveld, B. J. B. Folmer, E. W. Meijer and R. P. Sijbesma, Chem.
Rev., 2001, 101, 4071; H. Hofmeier and U. S. Schubert, Chem.
Commun., 2005, 2423.
5 H. Hofmeier and U. S. Schubert, Macromol. Chem. Phys., 2003, 204,
1391.
6 J. M. Rodriguez-Parada and V. Percec, Macromolecules, 1986, 19, 55;
C. Pugh and V. Percec, Macromolecules, 1986, 19, 65; T. Park,
S. C. Zimmerman and S. Nakashima, J. Am. Chem. Soc., 2005, 127,
6520.
7 F. Ilhan, T. H. Galow, M. Gray, G. Clavier and V. M. Rotello, J. Am.
Chem. Soc., 2000, 122, 5895; O. Uzun, A. Sanyal, H. Nakade,
R. J. Thibault and V. M. Rotello, J. Am. Chem. Soc., 2004, 126, 14773.
8 J. M. Pollino, L. P. Stubbs and M. Weck, J. Am. Chem. Soc., 2004, 126,
563; J. M. Pollino, K. P. Nair, L. P. Stubbs, J. Adams and M. Weck,
Tetrahedron, 2004, 60, 7205.
9 R. F. M. Lange and E. W. Meijer, Macromolecules, 1995, 28, 782;
L. R. Rieth, R. F. Eaton and G. W. Coates, Angew. Chem., Int. Ed.,
2001, 40, 2153; K. Yamauchi, J. R. Lizotte and T. E. Long,
Macromolecules, 2003, 36, 1083.
Fig. 3 Solution viscosity measurements at 26 uC of 2a and pMMA (Mn =
15.1k, PDI = 1.10) in DMSO (20 g L21) with increasing amounts of
divalent 4a or 4b. The relative viscosity was determined using polymer 2a
as the reference. Equivalents of guest is relative to urea units on the
polymer.
10 R. Shenhar, A. Sanyal, O. Uzun, H. Nakade and V. M. Rotello,
Macromolecules, 2004, 37, 4931; G. N. Tew, K. A. Aamer and
R. Shunmugam, Polymer, 2005, 46, 8440; for representative examples
where metal-free controlled radical polymerization was used to
synthesize polymers end-functionalized with molecular recognition units,
see: B. G. G. Lohmeifer and U. S. Schubert, J. Polym. Sci., Part A:
Polym. Chem., 2004, 42, 4016; H. W. Gibson, Z. Ge, F. Huang,
J. W. Jones, H. Lefebvre, M. J. Vergne and D. M. Hercules,
Macromolecules, 2005, 38, 2626.
11 G. Moad, E. Rizzardo and S. H. Thang, Aust. J. Chem., 2005, 58, 379.
12 C. J. Hawker, A. W. Bosman and E. Harth, Chem. Rev., 2001, 101,
3661.
13 R. M. Versteegen, R. Kleppinger, R. P. Sijbesma and E. W. Meijer,
Macromolecules, 2006, 39, 772.
14 P. J. Smith, M. V. Reddington and C. S. Wilcox, Tetrahedron Lett.,
1992, 33, 6085; T. R. Kelly and M. H. Kim, J. Am. Chem. Soc., 1994,
116, 7072; C. S. Wilcox, E.-I. Kim, D. Romano, L. H. Kuo, A. L. Burt
and D. P. Curran, Tetrahedron, 1995, 51, 621.
15 E. Fan, S. A. van Arman, S. Kincaid and A. D. Hamilton, J. Am.
Chem. Soc., 1993, 115, 369; A. Tejeda, A. I. Oliva, L. Simon, M. Grande,
C. Caballero and J. R. Moran, Tetrahedron Lett., 2000, 41, 4563;
B. Alonso, C. M. Casado, I. Cuadrado, M. Moran and A. E. Kaifer,
Chem. Commun., 2002, 1778.
Solution viscosity measurements using disulfonate 4a and
dicarboxylate 4b were measured in order to investigate the
supramolecular crosslinking of the polymer chains. As shown in
Fig. 3, the viscosity of a solution of polymer 2a (20 g L21 in
DMSO) increases with the addition of divalent guest 4a or 4b. The
increase in viscosity observed with polymer 2a is consistent with an
increase in molecular weight due to supramolecular crosslinking of
the polymer chains. In comparison, when the divalent 4b is added
to a pMMA homopolymer a viscosity response is not observed.
Changes in the viscosity are also related to the strength of the
noncovalent interaction—smaller changes were observed with
disulfonate 4a than dicarboxylate 4b. This result parallels the
weaker urea–guest interactions observed with sulfonate 3a than
carboxylate 3b by NMR spectroscopy.21
In conclusion, we have investigated the synthesis of methacrylate
copolymers bearing pendant urea groups using RAFT polymeriza-
tion. Copolymers containing up to 10 mol% of the urea func-
tionality were synthesized in a controlled living process to afford
polymers with defined molecular weights and low PDI’s. The
molecular recognition elements employed in this paper can all be
synthesized relatively easily. The urea-containing methyl metha-
crylate monomers were synthesized and isolated with minimal
purification required. Since urea functionalities interact with
carboxylate anions and its isosteres with varying degrees of
strength, a route for tuning the strength of these interactions has
been developed.
16 K. A. Connors, Binding Constants, Wiley, New York, 1987; L. Fielding,
Tetrahedron, 2000, 56, 6151.
17 The chemical shifts of the urea N–H signals did not change with
concentration, which indicates that the self-associating interactions of
the ureas are weaker than the detectable limit of NMR spectroscopy.
18 NMR-Tit is available from Professor Chris Hunter’s website at:
J. C. Morales and K. Young, Chem.–Eur. J., 1998, 4, 845.
19 The downfield shift of the urea resonance at 8.56 ppm with the addition
of guest was used to determine the association constant.
20 P. A. Gale, Acc. Chem. Res., 2006, 39, 465; V. Amendola, D. Esteban-
Gomez, L. Fabbrizzi and M. Licchelli, Acc. Chem. Res., 2006, 39,
343.
21 These experiments demonstrate subtle changes to the viscosity with the
addition of 4a or 4b, even when in excess relative to the urea
functionalities. It is likely that the changes to viscosity are the result of a
combination of monovalent and divalent binding of 4a and 4b to the
polymer.
Notes and references
1 F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer and A. P. H. J. Schenning,
Chem. Rev., 2001, 101, 4071; C. Hilger and R. Stadler, Polymer, 1991,
32, 3244.
956 | Chem. Commun., 2007, 954–956
This journal is ß The Royal Society of Chemistry 2007