2348
O. V. Singh, H. Han / Tetrahedron Letters 48 (2007) 2345–2348
Ohno, H.; Ibuka, T.; Fujii, N. J. Chem. Soc., Perkin
115.64, 114.69, 113.80, 76.69, 70.06, 66.86, 55.69, 55.15,
Trans. 1 1999, 2983–2996, and references cited therein; For
a review: (c) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247–
258.
52.30, 34.29, 23.18, 22.25, 13.49. Compound 7c: mp = 40–
25
41 ꢁC; ½aꢁD ꢂ59.7 (c 1.3, CH2Cl2); 1H NMR (500 MHz,
CDCl3): d 7.18 (d, 2H, J = 8.5 Hz), 6.82–6.80 (m, 6H),
5.87 (d, 1H, J = 8.7 Hz), 5.73 (dt, 1H, J = 6.5, 15.4 Hz),
5.41 (dd, 1H, J = 8.5, 15.6 Hz), 4.53 (d, 1H, J = 12 Hz),
4.32–4.25 (m, 2H), 4.13 (dd, 1H, J = 3.0, 8.5 Hz), 3.97–
3.90 (m, 2H), 3.77 (s, 3H), 3.76 (s, 3H), 2.11–2.04 (m, 2H),
1.99 (s, 3H), 1.40–1.35 (m, 2H), 1.32–1.25 (m, 6H), 0.89 (t,
3H, J = 6.8 Hz); 13C NMR (75 MHz, CDCl3): d 169.80,
159.32, 154.10, 152.83, 136.00, 130.35, 129.46, 126.68,
115.69, 114.72, 113.83, 76.77, 70.09, 66.89, 55.72, 55.20,
52.33, 32.27, 31.64, 29.12, 28.79, 23.23, 22.55, 13.98.
4. Singh, O. V.; Kampf, D. J.; Han, H. Tetrahedron Lett.
2004, 45, 7239–7242.
5. (a) Toshimitsu, A.; Terao, K.; Uemura, S. J. Org. Chem.
1987, 52, 2018–2026; (b) Adickes, H. W.; Politzer, I. R.;
Meyers, A. I. J. Am. Chem. Soc. 1969, 91, 2155–2156.
6. (a) Wang, C.-L. J.; Calabresse, J. C. J. Org. Chem. 1991,
56, 4341–4343; (b) Overman, L. E. Angew. Chem., Int. Ed.
Engl. 1984, 23, 579–586; (c) Knapp, S.; Patel, D. V.
Tetrahedron Lett. 1982, 23, 3539–3542.
25
7. For a review of SN20 reactions: Kar, A.; Argade, N. P.
Synthesis 2005, 2995–3022.
Compound 7d: mp = 49–50 ꢁC; ½aꢁD ꢂ46.89 (c 1.22,
CH2Cl2); 1H NMR (500 MHz, CDCl3): d 7.18 (d, 2H,
J = 8.9 Hz), 6.82–6.81 (m, 6H), 5.85 (d, 1H, J = 8.7 Hz),
5.73 (dt, 1H, J = 6.0, 15.5 Hz), 5.41 (dd, 1H, J = 8.1,
15.6 Hz), 4.53 (d, 1H, J = 11.3 Hz), 4.31–4.25 (m, 2H),
4.13 (dd, 1H, J = 3.0, 8.0 Hz), 3.97–3.90 (m, 2H), 3.78 (s,
3H), 3.76 (s, 3H), 2.07 (q, 2H, J = 7.2 Hz), 1.99 (s, 3H),
1.41–1.35 (m, 2H), 1.26 (s, 16H), 0.88 (t, 3H, J = 6.8 Hz);
13C NMR (75 MHz, CDCl3): d 169.97, 159.17, 153.88,
152.63, 136.24, 130.16, 129.53, 129.40, 126.39, 115.49,
114.54, 113.72, 69.93, 66.57, 55.67, 55.19, 52.18, 32.34,
31.90, 29.64, 29.48, 29.35, 29.17, 23.36, 22.67, 14.11.
8. (a) Han, H.; Cho, C. W.; Janda, K. D. Chem. Eur. J. 1999,
5, 1565–1569; see, for other similar approaches: (b)
Morgan, A. J.; Masse, C. E.; Panek, J. S. Org. Lett.
1999, 1, 1949–1952; (c) Chuang, C.-C.; Vassar, V.; Ma, Z.;
Geney, R.; Ojima, I. Chirality 2002, 14, 151–162; For
initial studies: (d) Li, G.; Chang, H.-T.; Sharpless, K. B.
Angew. Chem., Int. Ed. 1996, 35, 451–454; (e) Rudolph, J.;
Sennhenn, P. C.; Vlaar, C. P.; Sharpless, K. B. Angew.
Chem., Int. Ed. 1996, 35, 2810–2813; (f) Bruncko, M.;
Schlingloff, G.; Sharpless, K. B. Angew. Chem., Int. Ed.
1997, 36, 1483–1486.
25
Compound 7e: mp = 67–68 ꢁC; ½aꢁD ꢂ40.5 (c 1.2,
9. General procedure for the copper-mediated SN20 reaction of
vinyl oxazine with Grignard reagents: A flame dried two-
necked flask was charged with cuprous cyanide (8.5 mg,
0.1 mmol) and dry ether (10 mL) under nitrogen atmo-
sphere. The reaction flask was cooled to 0 ꢁC in ice–salt
mixture and a solution of Grignard reagent in ether (1 M,
0.5 mL, 0.5 mmol) was added dropwise. After stirring for
10 min, a solution of vinyl oxazine (79 mg, 0.2 mmol) in
ether was added dropwise through cannula for 10 min.
The reaction mixture was stirred for an additional hour,
and then brought to room temperature and stirred for
another 1 h. After the complete disappearance of the
starting material on TLC, the brownish reaction mixture
was quenched with saturated ammonium chloride,
extracted with ethyl ether (3 · 20 mL), washed with water,
and dried over anhydrous sodium sulfate. The solvents
were removed in vacuo and the residue was purified by
flash column chromatography on silica gel (ethyl acetate–
hexane, 3:1) to afford the respective protected N-acetyl-
sphingosines 7a–e.
CH2Cl2); 1H NMR (500 MHz, CDCl3): d 7.18 (d, 2H,
J = 8.2 Hz), 6.82–6.81 (m, 6H), 5.84 (d, 1H, J = 8.5 Hz),
5.73 (dt, 1H, J = 6.7, 15.5 Hz), 5.41 (dd, 1H, J = 7.6,
15.6 Hz), 4.53 (d, 1H, J = 11.0 Hz), 4.31–4.25 (m, 2H),
4.13 (dd, 1H, J = 3.0, 7.5 Hz), 3.97–3.90 (m, 2H), 3.78 (s,
3H), 3.77 (s, 3H), 2.07 (q, 2H, J = 7.4 Hz), 1.99 (s, 3H),
1.41–1.35 (m, 2H), 1.26 (s, 24H), 0.88 (t, 3H, J = 6.5 Hz);
13C NMR (75 MHz, CDCl3): d 169.81, 159.35, 154.12,
152.84, 136.07, 130.37, 129.49, 126.67, 115.70, 114.75,
113.86, 76.79, 70.12, 66.91, 55.75, 55.23, 52.34, 32.32,
31.92, 29.69, 29.50, 29.22, 23.28, 22.67, 14.03.
11. (a) Lipshutz, B. H. Synlett 1990, 119–128; (b) Spino, C.;
Beaulieu, C.; Lafreniere, J. J. Org. Chem. 2000, 65, 7091–
7097.
12. For the biological activities of sphingosines: (a) Merrill, A.
H., Jr.; Sweeley, C. C. In Biochemistry of Lipids, Lipopro-
teins and Membranes; Vance, D. E., Vance, J. E., Eds.;
Elsevier Science B.V.: Amsterdam, 1996; Chapter 12, pp
309–339; (b) Kolter, T.; Sandhoff, K. Angew. Chem. Int.
Ed. 1999, 38, 1532–1568; (c) Hannun, Y. A. Sphingolipid-
Mediated Signal Transduction; R.G. Landes Company:
Austin, 1997.
25
10. Characterization data 7a: Mp = 62–63 ꢁC; ½aꢁD ꢂ44.5 (c
1
1.2, CHCl3); H NMR (500 MHz, CDCl3): d 7.18 (d, 2H,
J = 9.0 Hz), 6.82–6.81 (m, 6H), 5.86 (d, 1H, J = 8.6 Hz),
5.73 (dt, 1H, J = 7.0, 16.0 Hz), 5.41 (dd, 1H, J = 8.0,
15.6 Hz), 4.53 (d, 1H, J = 10.5 Hz), 4.31–4.25 (m, 2H),
4.13 (dd, 1H, J = 3.0, 8.0 Hz), 3.97–3.90 (m, 2H), 3.78 (s,
3H), 3.77 (s, 3H), 2.07 (q, 2H, J = 7.4 Hz), 1.99 (s, 3H),
1.44–1.35 (m, 2H), 1.26 (s, 20H), 0.88 (t, 3H, J = 6.7 Hz);
13C NMR (75 MHz, CDCl3): d 169.78, 159.29, 154.05,
152.78, 135.99, 130.29, 129.43, 126.60, 115.64, 114.67,
113.78, 70.04, 66.84, 55.67, 55.14, 52.28, 32.24, 31.84,
29.59, 29.42, 29.14, 23.15, 22.57, 13.93. Compound 7b:
13. For reviews on the synthesis of sphingosines: (a) Koski-
nen, P. M.; Koskinen, A. M. P. Synthesis 1998, 1075–
1091; (b) Vankar, Y. D.; Schmidt, R. R. Chem. Soc. Rev.
2000, 29, 201–216; For more recent syntheses: (c) Chaud-
hari, V. D.; Kumar, K. S. A.; Dhavale, D. D. Org. Lett.
2005, 7, 5805–5807; (d) Rai, A. N.; Basu, A. Org. Lett.
2004, 6, 2861–2863; (e) Torssell, S.; Somfai, P. Org.
Biomol. Chem. 2004, 2, 1643–1646; (f) Raghavan, S.;
Rajender, A.; Yadav, J. S. Tetrahedron: Asymmetry 2003,
14, 2093–2099.
25
1
½aꢁD ꢂ50.0 (c 1.3, CH2Cl2); H NMR (500 MHz, CDCl3):
d 7.18 (d, 2H, J = 9.0 Hz), 6.82–6.80 (m, 6H), 5.88 (d, 1H,
J = 8.8 Hz), 5.73 (dt, 1H, J = 6.4, 15.4 Hz), 5.42 (dd, 1H,
J = 7.6, 15.6 Hz), 4.54 (d, 1H, J = 11.5 Hz), 4.32–4.25 (m,
2H), 4.14 (dd, 1H, J = 3.0, 8.0 Hz), 3.97–3.91 (m, 2H),
3.77 (s, 3H), 3.76 (s, 3H), 2.08–2.04 (m, 2H), 1.99 (s, 3H),
1.42 (d hexate, 2H, J = 1.5, 7.0 Hz), 0.91 (t, 3H,
J = 7.0 Hz); 13C NMR (75 MHz, CDCl3): d 169.77,
159.29, 154.05, 152.78, 135.61, 130.29, 129.43, 126.88,
14. (a) Wright, J. A.; Yu, J.; Spencer, J. B. Tetrahedron Lett.
2001, 42, 4033–4036; (b) Oikawa, Y.; Yoshioka, T.;
Yonemitsu, O. Tetrahedron Lett. 1982, 23, 885–888; (c)
Fukuyama, T.; Laird, A. A.; Hotchkiss, L. M. Tetra-
hedron Lett. 1985, 26, 6291–6292.
15. Shibuya, H.; Kawashima, K.; Ikeda, M.; Kitagawa, I.
Tetrahedron Lett. 1989, 30, 7205–7208.
16. Singh, O. V.; Han, H. Tetrahedron Lett. 2003, 44, 5289–
5292.