2140
S.-R. Li et al. / Tetrahedron Letters 48 (2007) 2139–2141
iv
CH3O
BnO
OH
CH3O
BnO
O
CH3O
BnO
CHO
CH3O
HO
CHO
iii
i
ii
4
3
2
1
CH3O
O
CH3O
O
CH3O
BnO
O
O
CH3O
BnO
O
vii
vi
v
C6H5
C6H5
HO
BnO
ix
C6H5
C6H5
5
7
viii
8
6
CH3O
HO
O
CH3O
HO
O
O
CH3O
BnO
O
O
x
C6H5
C6H5
C6H5
9
11
10
Scheme 1. Synthesis of dalbergichromene (8), dihydrodalbergichromene (9), O-benzyldalbergin (10), and dalbergin (11). Reagents and conditions:
(i) C6H5CH2Br, K2CO3, acetone, reflux 5 h, 98%; (ii) m-CPBA, CH2Cl2, 12 h, 6 N NaOH–MeOH, 3 h, HCl–H2O, 92%; (iii) allyl bromide, K2CO3,
acetone, reflux, 8 h, 98%; (iv) C6H5COCl, ZnO, rt, 61%; (v) Ph3P+CH3BrÀ, tert-BuOÀK+, 88%; (vi) Grubbs’ cat. (II), CH2Cl2, 96%; (vii) AlCl3,
CH2Cl2, 85%; (viii) Pd(OH)2/C, cyclohexene, EtOH, reflux, 95%; (ix) DDQ, dioxane, 77%; (x) Pd(OH)2/C, cyclohexene, EtOH, reflux, 87%.
dalbergin (11)19 with spectral data identical to that
10. Eguchi, T.; Hoshino, Y.; Ayame, A. Bull. Chem. Soc. Jpn.
reported,1 was produced in 87% yield.
2002, 75, 581–585.
11. Donnelly, D. M. X.; Finet, J. P.; Guiry, P. J.; Nesbitt, K.
Tetrahedron 2001, 57, 413–423.
In conclusion, besides we have disclosed the first and an
12. Pastine, S. J.; Youn, S. W.; Sames, D. Tetrahedron 2003,
efficient method to prepare the naturally occurring dal-
59, 8859–8868.
bergichromene (8) in 39% total yield, the other naturally
13. (a) del Carmen Cruz, M.; Tamariz, J. Tetrahedron 2005,
occurring compound dalbergin (11) was also prepared
from the same common neoflavene (7) intermediate in
31% total yield.
61, 10061–10072; (b) da Silva, A. J. M.; Melo, P. A.; Silva,
N. M. V.; Brito, F. V.; Buarque, C. D.; de Souza, D. V. V.;
Rodrigues, P.; Pocas, E. S. C.; Noel, F.; Albuquerque, E.
X.; Costa, P. R. R. Bioorg. Med. Chem. Lett. 2001, 11,
283–286.
14. Synthesis of 7: A solution of 6 (0.33 g, 0.89 mmol) in
CH2Cl2 (60 mL) was stirred and Grubbs’ catalyst (II)
(0.05 g, 0.06 mmol) was added at rt under dry argon. The
resulting mixture was continually stirred for 8 h. After
work-up as general procedure, and chromatographic
purification process (silica-gel, EtOAc–n-hexane = 1:15),
pure 7 (0.29 g, 96%) was given as colorless liquid, Rf 0.35
(ethyl acetate–n-hexane = 1:10); UV (CH2Cl2) 211, 234,
320 nm; IR (KBr) 2924, 2352, 1612, 1503, 1454, 1379,
Acknowledgments
We are grateful to the NSC (Taiwan) for financial sup-
port. We are also thankful to Professor Hiroki Taka-
hata, Tohoku Pharmaceutical University, Japan, for
his advice and encouragement.
1
1271, 1193, 1017, 808, 747 cmÀ1; H NMR (CDCl3, 200
References and notes
MHz) d 3.85 (s, 3H, OCH3), 4.74 (d, J = 4.0 Hz, 2H, H-2),
4.94 (s, 2H, CH2C6H5), 5.63 (t, 1H, J = 4.0 Hz, H-3), 6.53
(s, 1H, ArH), 6.56 (s, 1H, ArH), 7.16 (m, 2H, ArH), 7.28
(m, 8H, ArH); 13C NMR (CDCl3, 50 MHz) d 55.94
(OCH3), 65.26 (C-2), 71.84 (OCH2C6H5), 100.93, 113.36,
115.42, 117.0, 127.45, 127,56, 127.61, 128.32, 136.93,
137.20, 138.12, 141.79, 149.94, 150.70; EI-MS (70 eV)
m/z (intensity), 344 (M+, 22), 281 (38), 254 (18), 253
(M+À91, 100), 249 (23), 221 (22), 165 (26), 115 (14);
HRMS calcd for C23H20O3: 344.1412. Found: 344.1413.
15. Jurd, L.; Rottman, J. N. Tetrahedron 1978, 27, 57–62.
16. Dalbergichromene 8 was obtained as a colorless crystal,
mp 99–101 °C (petroleum ether) [reported,2 mp 99–
100 °C], Rf 0.36 (EtOAc–n-hexane = 1:4), 1H NMR
(CDCl3, 400 MHz) d 3.86 (s, 3H, OCH3), 4.76 (d,
J = 4.0 Hz, 2H, H-2), 5.21 (s, 1H, OH), 5.69 (t, J =
4.0 Hz, 1H, H-3), 6.51 (s, 1H, ArH), 6.62 (s, 1H, ArH),
7.31 (m, 5H, ArH), 13C NMR (CDCl3, 100 MHz) d 56.02
(OCH3), 65.30 (C-2), 99.96, 111.53, 116.60, 117.52, 127.69,
128.32, 128.52, 137.13, 138.30, 139.59, 146.73, 148.51;
HRMS (ESI) calcd for C16H14O3Na [M+Na]+: 277.0841.
Found: 277.0838.
1. Chan, S. C.; Chang, Y. S.; Kuo, S. C. Phytochemistry
1997, 46, 947–949.
2. Mukerjee, S. K.; Saroja, T.; Seshadri, T. R. Tetrahedron
1971, 27, 799–803.
3. Dhingra, V. K.; Mukerjee, S. K.; Saroja, T.; Seshadri, T.
R. Phytochemistry 1971, 10, 2551.
4. Donnelly, D. M. X.; O’Reilly, J.; Thompson, J. C.
Phytochemistry 1972, 11, 823–826.
5. Kawase, M.; Sakagami, H.; Motohashi, N.; Hauer, H.;
Chatterjee, S. S.; Spengler, G.; Vigyikanne, A. V.; Molnar,
A.; Molnar, J. In Vivo 2005, 19, 705–711.
6. Ravise, A.; Kirkiacharian, B. S. Phytopath. Z. 1980, 97,
219–233.
7. Donnelly, D. M. X.; Kavanagh, P. J.; Kunesch, G.;
Polonsky, J. J. Chem. Soc., Perkin. Trans. 1 1973, 9, 965–
967.
8. (a) Levine, C.; Hiasa, H.; Marians, K. J. Biochim. Biophys.
Acta, Gene Struct. Expr. 1998, 1400, 29–43; (b) Vlietinck,
A. J.; De Bruyne, T.; Apers, S.; Pieters, L. A. Planta Med.
1998, 64, 97–109.
9. (a) Murakami, A.; Gao, G.; Omura, M.; Yano, M.; Ito,
C.; Furukawa, H.; Takahashi, D.; Koshimizu, K.; Ohi-
gashi, H. Bioorg. Med. Chem. Lett. 2000, 10, 59–62; (b)
Xie, L.; Takeuchi, Y.; Cosentino, L. M.; McPhail, A. T.;
Lee, K. H. J. Med. Chem. 2001, 44, 664–671.
17. Compound 9 was obtained as a colorless crystal, mp 96–
97 °C (n-hexane); UV (CH2Cl2) kmax 232, 300 nm; IR
(KBr) 3500, 1631, 1499, 1451, 1387, 1349, 1261, 1161,
1132, 1063, 1027, 885, 806, 757, 702 cmÀ1 1H NMR
;