Figure 4. Alternative radical cyclization approaches.
directly, which is known to be readily transformed into
CET.16
Figure 2. Typical Friedel-Crafts cyclization approaches.
Scheme 1. Enone Friedel-Crafts Cyclization Approach (?)
methylenedioxy substituent (R) was first noticed by Sha
and co-workers;6 (2) Pd(0)-catalyzed Heck-type coupling of
an unsaturated spirocyclic aryl halide precursor as exempli-
fied by the Tietze,9 Ikeda,10 Suga-Yoshida,11 and Hayes12
groups (Figure 3); and (3) radical cyclization approaches as
used by the Semmelheck13 and Taniguchi14 groups (Figure
4).
To test the feasibility of this B-ring closure approach, the
amido spiro-cyclopentenone 4a (or 4b) was prepared17
conveniently from proline-derived spirocyclic amino enone
2 and acid chloride 3 in good yield (Scheme 2) by following
procedures reported by Ikeda et al.10b Although the methyl-
enedioxy-substituted precursor 4a did not cyclize under
various Lewis or protic acid conditions, we found that a
(8) For an alternative B-ring cyclization approach involving a cationic
intermediate, see: Ishibashi, H.; Okano, M.; Tamaki, H.; Maruyama, K.;
Yakura, T.; Ikeda, M. J. Chem. Soc., Chem. Commun. 1990, 1436.
(9) (a) Tietze, L. F.; Shirok, H. Angew. Chem., Int. Ed. 1997, 36,
1124. (b) Tietze, L. F.; Shirok, H. J. Am. Chem. Soc. 1999, 121,
10264.
Figure 3. Typical Pd0-catalyzed Heck-type coupling approaches.
(10) (a) Ikeda, M.; Hirose, K.; El Bialy, S. A. A.; Sato, T.; Yakura, T.;
Bayomi, S. M. M. Chem. Pharm. Bull. 1998, 46, 1084. (b) Ikeda, M.; El
Bialy, S. A. A.; Hirose, K.; Kotake, M.; Sato, T.; Bayomi, S. M. M.; Shehata,
I. A.; Abdelal, A. M.; Gad, L. M.; Yakura, T. Chem. Pharm. Bull. 1999,
47, 983.
(11) Suga, S.; Watanabe, M.; Yoshida, J. I. J. Am. Chem. Soc. 2002,
124, 14824.
As a continuation of our study toward CET synthesis,15
we envisioned that an alternative Friedel-Crafts-type cy-
clization (Scheme 1, arrows) of a spiro-cyclic enone precur-
sor I would produce the tetracyclic ring structure II of CET
(12) Worden, S. M.; Mapitse, R.; Hayes, C. J. Tetrahedron Lett. 2002,
43, 6011.
(13) Semmelhack, M. F.; Chong, B. P.; Stauffer, R. D.; Rogerson, T.
D.; Chong, A.; Jones, L. D. J. Am. Chem. Soc. 1975, 97, 2507.
(14) Taniguchi, T.; Ishita, A.; Uchiyama, M.; Tamura, O.; Muraoka, O.;
Tanabe, G.; Ishibashi, H. J. Org. Chem. 2005, 70, 1922.
(15) (a) Li, W.-D. Z.; Wang, Y.-Q. Org. Lett. 2003, 5, 2931. (b) Li,
W.-D. Z.; Ma, B.-C. J. Org. Chem. 2005, 70, 3277. (c) Ma, B.-C.; Wang,
Y.-Q.; Li, W.-D. Z. J. Org. Chem. 2005, 70, 4528.
(16) Yasuda, S.; Yamada, T.; Hanaoka, M. Tetrahedron Lett. 1986, 27,
2023.
(3) For an account, see: Weinreb, S. M.; Semmelhack, M. F. Acc. Chem.
Res. 1975, 8, 158.
(4) Kuehne, M. E.; Bornmann, W. G.; Parsons, W. H.; Spitzer, T. D.;
Blount, J. F.; Zubieta, J. J. Org. Chem. 1988, 53, 3439.
(5) Planas, L.; Perard-Viret, J.; Royer, J. J. Org. Chem. 2004, 69,
3087.
(6) Sha, C. K.; Young, J. J.; Yeh, C. P.; Chang, S. C.; Wang, S. L. J.
Org. Chem. 1991, 56, 2694.
(7) Isono, N.; Mori, M. J. Org. Chem. 1995, 60, 115.
(17) See Supporting Information for experimental details.
1212
Org. Lett., Vol. 9, No. 7, 2007