Page 19 of 23
Crystal Growth & Design
1
2
3
4
5
6
7
8
9
35. Zhou, H.-C.; Kitagawa, S. Metal-Organic Frameworks (MOFs), Chem. Soc. Rev.,
2014, 43, 5415-5418.
36. Perry, J. J.; Perman, J. A.; Zaworotko, M. J. Design and synthesis of metal-organic
frameworks using metal-organic polyhedral as supermolecular building blocks. Chem.
Soc. Rev., 2009, 38, 1400-1417.
37. Eddaoudi, M.; Moler, D. B.; Chen, B.; Reineke, T. M.; Keeffe, M. O.; Yaghi, O. M.
Modular chemistry: Secondary building units as a basis for the design of highly
porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34,
319-330.
38. Zhai, Q.-G.; Bu, X.; Zhao, X.; Li, D.-S.; Feng, P. Pore Space Partition in Metal–
Organic Frameworks Acc. Chem. Res. 2017, 50, 407-417.
39. Das, S. K.; Chatterjee, S.; Bhunia, S.; Mondal, A.; Mitra, P.; Kumari, V.; Pradhan, A.;
Bhaumik, A. A new strongly paramagnetic cerium-containing microporous MOF for
CO2 fixation under ambient conditions. Dalton Trans. 2017, 46, 13783−13792.
40. Markad, D.; Khullar, S.; Mandal, S. K. Engineering a Nanoscale Primary Amide-
Functionalized 2D Coordination Polymer as an Efficient and Recyclable
Heterogeneous Catalyst for the Knoevenagel Condensation Reaction. ACS Appl. Nano
Mater. 2018, 1, 5226−5236.
41. Li, B.; Ju, Z.; Zhou, M.; Su, K.; Yuan, D. A Reusable MOF-Supported Single-Site
Zinc(II) Catalyst for Efficient Intramolecular Hydroamination of o –Alkynylanilines.
Angew. Chem. Int. Ed. 2019, 58 7687-7691; Angew.Chem.2019, 131, 7769–7773.
42. Nguyen, K. D.; Kutzscher, C.; Drache, F.; Senkovska, I.; Kaskel, S. Chiral
Functionalization of a Zirconium Metal-Organic Framework (DUT-67) as a
Heterogeneous Catalyst in Asymmetric Michael Addition Reaction. Inorg. Chem.
2018, 57, 1483−1489.
43. Jiao, L.; Wang, Y.; Jiang, H.-L.; Xu, Q. Metal-Organic Frameworks as Platforms for
Catalytic Applications. Adv. Mater. 2018, 30, 1703663.
44. Gao, W.Y.; Chen, Y.; Niu, Y.; Williams, K.; Cash, L.; Perez, P. J.; Wojtas, L.; Cai,
J.; Chen, Y. S.; Ma, S. Crystal Engineering of an nbo Topology Metal–Organic
Framework for Chemical Fixation of CO2 under Ambient Conditions. Angew. Chem.,
Int. Ed. 2014, 53, 2615-2619.
45. Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. Preparation, Clathration Ability, and
Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium
(II) and 4,4'-Bipyridine. J. Am. Chem. Soc. 1994, 116, 1151-1152.
46. Haldar, R.; Reddy, S. K.; Suresh, V. M.; Mohapatra, S.; Balasubramanian, S.; Maji,
T. K. Flexible and Rigid Amine‐Functionalized Microporous Frameworks Based on
Different Secondary Building Units: Supramolecular Isomerism, Selective
CO2 Capture, and Catalysis. Chem. Eur. J. 2014, 20, 4347-4356.
47. Sasan, K.; Lin, Q.; Maob, C.; Feng, P. Open framework metal chalcogenides as
efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel.
Nanoscale, 2016, 8, 10913–10916.
48. Liang, L.; Liu, C.; Jiang, F.; Chen, Q.; Zhang, L.; Xue, H.; Jiang, H. L.; Qian, J.;
Yuan, D.; Carbon dioxide Capture and Conversion by an Acid-Base Resistant Metal-
Organic Framework. Hong, M. Nat. chem. 2017, 8, 1233;
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
49. De, D.; Pal, T. K.; Neogi, S.; Senthilkumar, S.; Das, D.; Gupta, S. S.; Bharadwaj P. K.
A Versatile Cu(II) Metal–Organic Framework Exhibiting High Gas Storage Capacity
with Selectivity for CO2 : Conversion of CO2 to Cyclic Carbonate and Other Catalytic
Abilities. Chem. Eur. J. 2016, 22, 3387–3396.
Page no:19
ACS Paragon Plus Environment