expected the reduction of the positively charged complex occurs
more readily than for neutral 1. The Cu(II) anion arises from
adventitious oxidation during crystallisation which was carried
out in air. The formation of 2 cannot occur while the copper is
bound as the N-methyl groups and sulfur atoms are held too far
apart.
These investigations show that the products of the reactions of
Cu(II) with this type of thiosemicarbazide can in part be controlled
by selection of the appropriate metal salt and reaction solvent. This
has permitted the isolation of a new Cu(II) complex together with
a previously unreported 3-methyl-1,3,4-thiadiazolium cation and
a very unusual 1,3,5-thiadiazole.
measured, 2578 unique (Rint = 0.040) which were used in all calculations.
The final wR(F2) was 0.0379. Crystal structure determination of complex
2 Crystal data. C18H20Cl4CuN6S2, M = 589.89, triclinic, a = 7.3900(2),
˚
b = 9.9448(2), c = 16.1842(3) A, a = 80.9969(10), b = 88.6086(10), c =
3
¯
˚
85.1073(9) U = 1170.40(5) A , T = 150 K, space group P1, Z = 2, l(Mo-
Ka) = 1.588 mm−1, 17872 reflections measured, 5319 unique (Rint = 0.039)
which were used in all calculations. The final wR(F2) was 0.0357.
§ CCDC reference numbers 623527 and 623528. For crystallographic data
in CIF or other electronic format see DOI: 10.1039/b617186a
1 Metal Ions in Proteins, Vol. 3. Copper Proteins, ed. T. G. SpiroWiley,
New York, 1981; The Biochemistry of Copper, ed. J. Peisach, W. E. Blum-
berg and P. Aisen, Academic Press, New York, 1966.
2 D. X. West, S. B. Padhye and P. B. Sonawane, Struct. Bonding, 1991,
76, 1–50; A. E. Liberta and D. X. West, Biometals, 1992, 5, 121–
126; International Encyclopedia of Pharmacology and Therapeutics, ed.
J. G. Cory and A. H. Cory, Pergamon Press, New York, 1989; D. X.
West, A. E. Liberta, S. B. Padhye, R. C. Chikate, P. B. Sonawane, A. S.
Kumbar and R. G. Yeranda, Coord. Chem. Rev., 1993, 123, 49–71 and
references therein.
3 P. J. Blower, T. C. Castle, A. R. Cowley, J. R. Dilworth, P. S. Donnelly,
E. Labisbal, F. E. Sowrey, S. J. Teat and M. J. Went, Dalton Trans.,
2003, 4416–4425; A. R. Cowley, J. R. Dilworth, P. S. Donnelly, A. D.
Gee and J. Heslop, Dalton Trans., 2004, 2404–2412; A. R. Cowley,
J. R. Dilworth, P. S. Donnelly, E. Labisbal and A. Sousa, J. Am. Chem.
Soc., 2002, 124, 5270–5271; A. Obata, S. Kasamatsu, J. S. Lewis, T.
Furucawa, T. Takamatsu, J. Toyohara, T. Asai, M. J. Welch, S. G.
Adams, H. Saji, Y. Yorekura and Y. Fujibayashi, Nucl. Med. Biol.,
2005, 32, 21–28.
4 M. J. M. Campbell, Coord. Chem. Rev., 1975, 15, 279; J. S. Casas, M. S.
Garcia-Tasende and J. Sordo, Coord. Chem. Rev., 2000, 209, 197.
5 P. Le Meo, R. Noto, M. Gruttadauria and G. Werber, J. Heterocycl.
Chem., 1999, 36, 667–674.
Notes and references
† Compound 1: Found: C, 47.35; H, 5.35; N, 18.65; S, 14.22; Cu, 14.09.
C18H24N6S2Cu requires C, 47.84; H, 5.31; N, 18.66; S, 14.17; Cu, 14.06.
HPLC: Rt 10.44 min. kmax(DMF)/nm 288 (e/dm3 mol−1 cm−1 4972), 353
(4674) and 394sh (4177). Compound 2: Found: C, 36.91; H, 3.58; N,
14.31; S, 10.94; Cl, 23.92; Cu, 10.71. C18H20N6S2CuCl4 requires C, 36.63;
H, 3.39; N, 14.25; S, 10.86; Cl, 24.06; Cu, 10.71. HPLC: Rt 11.15 min.
kmax(DMF)/nm 407sh (e/dm3 mol−1 cm−1 870), 640 (100). Compound 3:
dH(300 MHz; CDCl3; Me4Si) 2.2 (6H, s, Me), 2.5 (6H, s, Me), 6.79–6.84
(2H, t, Ph), 7.09–7.14 (2H, t, Ph), 7.39–7.48 (6H, m, Ph). dC(300 MHz,
CDCl3, Me4Si) 42.6 (Me), 47.2 (Me), 120.5 (Ph), 120.9 (Ph), 127.8 (Ph),
=
=
128.0 (Ph), 128.6 (Ph), 129.0 (Ph), 136.4 (NNC N), 149,2 (NSC N).
‡ X-Ray crystallography Crystals were mounted on a glass fibre using
perfluoropolyether oil and cooled rapidly to 150 K in a stream of
cold N2 using an Oxford Cryosystems CRYOSTREAM unit. Diffraction
data were measured using an Enraf-Nonius Kappa CCD diffractometer
6 K. A. Jensen, A. Uffe, C. Larsen and C. Pedersen, Acta Chem. Scand.,
1968, 22, 1–50.
7 A. Castro, T. Castan˜o, A. Encinas, W. Porcal and C. Gil, Bioorg. Med.
Chem., 2006, 14, 1644–1652.
8 L. Forlani and C. Boga, J. Chem. Soc., Perkin Trans. 2, 2002, 768–772.
9 E. A. Mamaeva and A. A. Bakibaev, Tetrahedron, 2003, 59, 7521–7525.
10 F. Buccheri, G. Cusmano, R. Noto, R. Rainieri and G. Werber,
J. Heterocycl. Chem., 1987, 24, 521–523.
˚
(graphite-monochromated Mo-Ka radiation, k = 0.71073 A). Intensity
data were processed using the DENZO-SMN package.11 The structures
were solved using the direct-methods program SIR92,12 which located
all non-hydrogen atoms. Subsequent full-matrix least-squares refinement
was carried out using the CRYSTALS program suite.13 Coordinates
and anisotropic thermal parameters of all non-hydrogen atoms were
refined. The NH hydrogen atoms were located in a difference Fourier
map and their coordinates and isotropic thermal parameters subsequently
refined. Other hydrogen atoms were positioned geometrically after each
cycle of refinement. A 3-term Chebychev polynomial weighting scheme
was applied. Representations of the structures were produced using
ORTEP-3.14 Crystal structure determination of complex 1 Crystal data.
11 Z. Otwinowski and W. Monor, Processing of X-ray Diffraction Data
Collected in Oscillating Mode, Methods Enzymol, ed. C. W. Carter and
R. M. Sweet, Academic Press, New York, 1997, vol. 276.
12 A. Altomare, C. Cascarano, G. Giacovasco, A. Guagliardi, M. C. Burla,
G. Polidari and M. Camalli, J. Appl. Crystallogr., 1994, 27, 435.
13 CRYSTALS issue 12,P. W. Betteridge, J. R. Cooper, R. I. Cooper, K.
Prout and D. J. Watkin, J. Appl. Crystallogr., 36, 1487.
C18H24CuN6S2, M = 452.11, monoclinic, a = 11.8923(4), b = 5.5608(2),
3
˚
˚
c = 15.7983(5) A, b = 99.3695(14), U = 1030.81(6) A , T = 150 K,
space group P 21/c, Z = 2, l(Mo-Ka) = 1.277 mm−1, 10012 reflections
14 ORTEP-3 v 1.02, C. K. Johnson and M. K. Burnett, 1998.
1196 | Dalton Trans., 2007, 1194–1196
This journal is
The Royal Society of Chemistry 2007
©