660
K. M. Meyers et al. / Bioorg. Med. Chem. Lett. 17 (2007) 657–661
NH
antagonists in vitro. Despite an attractive in vitro pro-
O
PPh3Cl
a
b
file, the lead pyrazolopiperazinone compound 2b was
not active in vivo likely due to limited blood–brain
barrier penetration. Substitution of the pyrazole moiety
with pyrrole led to decreased MCH-R1 activity.
Through modification of the amide linker between the
4-fluorophenyl and the pyrrole rings in the pyrrolopiper-
azinone series, potency similar to that of pyrazolopiper-
azinones was achieved. Unfortunately, these changes led
16
OMe
F
F
20
21
Scheme 4. Reagents and conditions: (a) i—KHMDS, THF, 0 °C; 9, rt;
ii—H2, Pd/C, MeOH, rt, 73% two steps; (b) i—1,2-dibromoethane,
NaH, DMF, 65 °C, 67%; ii—12, NaH, CH3CN, 80 °C, 41–47%.
to significant losses in MCH-R1 selectivity over 5HT2C
.
The synthesis of 17 is outlined in Scheme 5. Bromination
of ethyl-pyrrole-2-carboxylate 18 gave a mixture of
4-bromo, 5-bromo, and 4,5-dibromo products, which
was easily separable employing reverse-phase prepara-
tive HLPC. 4-Bromo product 22 was N-alkylated with
1,2-dibromoethane and condensed with 12 in the pres-
ence of sodium hydride to give compound 23. Suzuki
coupling of 23 and 4-fluorophenyl boronic acid yielded
final compound 17.
References and notes
1. The Surgeon General’s Call to Action to Prevent and
Decrease Overweight and Obesity 2001, Public Health
Service: Office of the Surgeon General, US Department of
Health and Human Sevices: Rockville, MD, 2001;
The MCH-R1 in vitro activity of 3a–b and 14–17 is
shown in Table 2. Through linker modifications in the
pyrrolopiperazinone series, MCH-R1 binding activity
comparable to the pyrazolopiperazinones was achieved.
This suggests that the detrimental effect of switching the
pyrazole to pyrrole may be circumvented by modifica-
tions to the linker between the 4-fluorophenyl and pyr-
rolopiperazinone rings. Reduction of ketone 14 to
methylene 15 did not significantly affect MCH activity.
Chain-length changes resulted in the most potent
MCH binders of the pyrrolopiperazinone series (16
and 17). These results suggest that the overall orienta-
tion plays a more significant role for binding than the
polar character of the linker. In addition, these results
are in agreement with our hypothesis that the amide of
3a is not required for high-affinity binding with MCH-
R1. However, removal of the amide functionality be-
tween the pyrrolopiperazinone and 4-fluorophenyl rings
resulted in complete loss of MCH-R1 selectivity over
5HT2C (compounds 14–17).
2. (a) Powell, D. R. Obesity reviews 2006, 7, 89; (b) Fong, T.
M. Expert Opin. Investig. Drugs 2005, 14, 243; (c) Heal, D.
J.; Rowley, H. L.; Jackson, H. C. Progress in obesity
research 2003, 9, 260.
3. (a) Dyke, H. J.; Ray, N. C. Expert Opin. Ther. Patents
2005, 15, 1303; (b) Carpenter, A. J.; Hertzog, D. L. Expert
Opin. Ther. Patents 2002, 12, 1639.
4. (a) Kowalski, T. J.; McBriar, M. D. Expert Opin.
Investig. Drugs 2004, 13, 1113; (b) Receveur, J. M.;
Bjurling, E.; Ulven, T.; Little, P. B.; Norregaard, P. K.;
Hogberg, T. Bioorg. Med. Chem. Lett. 2004, 14, 5075;
(c) Shearman, L. P.; Camacho, R. E.; Sloan, S. D.;
Zhou, D.; Bednarek, M. A.; Hreniuk, D. L.; Feighner,
S. D.; Tan, C. P.; Howard, A. D.; Van der Ploeg, L. H.;
MacIntyre, D. E.; Hickey, G. J.; Strack, A. M. Eur.
J. Pharmacol. 2003, 475, 37.
5. (a) Kanuma, K.; Omodera, K.; Nishiguchi, M.; Funako-
shi, T.; Chki, S.; Semple, G.; Tran, T.-A.; Kramer, B.; Hsu,
D.; Casper, M.; Thomsen, B.; Sekiguchi, Y. Bioorg. Med.
Chem. Lett. 2005, 15, 3853; (b) Souers, A. J.; Gao, J.;
Brune, M.; Bush, E.; Wodka, D.; Vasudevan, A.; Judd, A.
S.; Mulhern, M.; Brodjian, S.; Dayton, B.; Shapiro, R.;
Hernandez, L. E.; Marsh, K. C.; Sham, H. L.; Collins, C.
A.; Kym, P. R. J. Med. Chem. 2005, 48, 1318; (c) Ulven, T.;
Little, P. B.; Receveur, J.-M.; Frimurer, T. M.; Rist, Ø.;
Nørregaard, P. K.; Ho¨gberg, T. Bioorg. Med. Chem. Lett.
2006, 16, 1070; (d) Ulven, T.; Frimurer, T. M.; Receveur,
J.-M.; Little, P. B.; Rist, Ø.; Nørregaard, P. K.; Ho¨gberg,
T. J. Med. Chem. 2005, 48, 5684; (e) Palani, A.; Shapiro, S.;
McBriar, M. D.; Clader, J. W.; Greenlee, W. J.; Spar, B.;
Kowalski, T. J.; Farley, C.; Cook, J.; van Heek, M.; Weig,
B.; O’Neill, K.; Graziano, M.; Hawes, B. E. J. Med. Chem.
2005, 48, 4746; (f) Huang, C. Q.; Baker, T.; Schwarz, D.;
Fan, J.; Heise, C. E.; Zhang, M.; Goodfellow, V. S.;
Markison, S.; Gogas, K. R.; Chen, T.; Wang, X.-C.; Zhu,
Y.-F. Bioorg. Med. Chem. Lett. 2005, 15, 3701.
In summary, we have identified pyrazolopiperazinone
and pyrrolopiperazinone scaffolds as potent MCH-R1
O
N
H
a
N
O
N
c
b
Br
17
18
N
OMe
Br
22
23
Scheme 5. Reagents and conditions: (a) i—Br2, CCl4, 0 °C, 53%; (b)
i—1,2-dibromoethane, NaH, DMF, 65 °C, 71%; ii—12, NaH,
CH3CN, 80 °C, 48–53%; (c) 4-fluorophenyl boronic acid, Pd(PPh3)4,
Na2CO3, H2O, DMF, 100 °C, 80–83%.
´
6. Mendez-Andino, J. L.; Colson, A.-O.; Meyers, K. M.;
Mitchell, M. C.; Hodge, K. M.; Howard, J. M.; Ackley, D.
C.; Holbert, J. K.; Mittelstadt, S. W.; Dowty, M. E.;
Obringer, C. M.; Suchanek, P; Reizes, O.; Hu, X. E.; Wos,
J. A. Bioorg. Med. Chem., submitted for publication.
7. (a) Mieling, G. E.; Mieling, K. K.; Bush, R. D.; Colson,
A.-O. US 2005170433 A1 2005; (b) Colson, A.-O.;
Perlman, J. H.; Smolyar, A.; Gershengorn, M. C.; Osman,
R. Biophys. J. 1998, 74, 1087.
Table 2. MCH-R1 in vitro activity for compounds 3a–b and14–17
Compound
MCH-R1 Ki (nM)
5HT2C Ki (lM)
3a
3b
14
15
16
17
625
NA
148
228
15
>100
—
5.3
0.7
2.5
0.1
8. Askew, B. C.; McIntyre, C. J.; Hunt, C. A.; Claremon, D.
A.; Gould, R. J.; Lynch, R. J.; Armstrong, D. J. Bioorg.
Med. Chem. Lett. 1995, 5, 475.
23