Page 5 of 7
Journal of the American Chemical Society
Nitro-Mannich Reaction,” J. Am. Chem. Soc. 2010, 132, 4925. (l) Spra-
J.-R.; Cho, C.-W.; Krische, M. J. “Hydrogen-Mediated Reductive Cou-
pling of Conjugated Alkynes with Ethyl (N-Sulfinyl)iminoacetates:
Synthesis of Unnatural -Amino Acids via Rhodium-Catalyzed C–C
Bond Forming Hydrogenation,” J. Am. Chem. Soc. 2005, 127, 11269. (c)
Komanduri, V.; Grant, C. D.; Krische, M. J. “Branch-Selective Reduc-
tive Coupling of 2-Vinyl Pyridines and Imines via Rhodium Catalyzed
C–C Bond Forming Hydrogenation,” J. Am. Chem. Soc. 2008, 130,
12592. (d) Zhu, S.; Lu, X.; Luo, Y.; Zhang, W.; Jiang, H.; Yan, M.; Zeng,
W. “Ruthenium(II)-Catalyzed Regioselective Reductive Coupling of
-Imino Esters with Dienes,” Org. Lett. 2013, 15, 1440. (e) Liu, R. Y.;
Yang, Y.; Buchwald, S. L. “Regiodivergent and Diastereoselective CuH-
Catalyzed Allylation of Imines with Terminal Allenes,” Angew. Chem.,
Int. Ed. 2016, 55, 14077. (f) Lee, K. N.; Lei, Z.; Ngai, M.-Y. “-Selective
Reductive Coupling of Alkenylpyridines with Aldehydes and Imines
via Synergistic Lewis Acid/Photoredox Catalysis,” J. Am. Chem. Soc.
2017, 139, 5003. For related redox neutral processes, see: (g) Schmitt,
D. C.; Lee, J.; Dechert-Schmitt, A.-M. R.; Yamaguchi, E.; Krische, M. J.
“Ruthenium Catalyzed Hydroaminoalkylation of Isoprene via Trans-
fer Hydrogenation: Byproduct-Free Prenylation of Hydantoins,”
Chem. Commun. 2013, 49, 6096. (h) Chen, T.-Y.; Tsutsumi, R.; Mont-
gomery, T. P.; Volchkov, I.; Krische, M. J. “Ruthenium-Catalyzed C–C
Coupling of Amino Alcohols with Dienes via Transfer Hydrogenation:
Redox-Triggered Imine Addition and related Hydroaminoalkyla-
tions,” J. Am. Chem. Soc. 2015, 137, 1798. (i) Oda, S.; Sam, B.; Krische,
M. J. “Hydroaminomethylation Beyond Carbonylation: Allene–Imine
Reductive Coupling by Ruthenium-Catalyzed Transfer Hydrogena-
tion,” Angew. Chem., Int. Ed. 2015, 54, 8525.
(12) For enantioselective Cu-catalyzed imine hydrosilylation, see:
Lipshutz, B. H.; Shimizu, H. “Copper(I)-Catalyzed Asymmetric Hy-
drosilylations of Imines at Ambient Temperatures,” Angew. Chem.,
Int. Ed. 2004, 43, 2228.
(13) For Cu–H reviews, see: (a) Rendler, S.; Oestreich, M. “Polishing
a Diamond in the Rough: “Cu–H” Catalysis with Silanes,” Angew.
Chem., Int. Ed. 2007, 46, 498. (b) Lipshutz, B. H. “Rediscovering Or-
ganocopper Chemistry Through Copper Hydride. It’s All About the
Ligand,” Synlett 2009, 509. (c) Jordan, A. J.; Lalic, G.; Sadighi, J. P.
“Coinage Metal Hydrides: Synthesis, Characterization, and Reactiv-
ity,” Chem. Rev. 2016, 116, 8318.
(14) For reviews of catalytic reductive couplings with metals other
than Cu, see: (a) Montgomery, J. “Nickel-Catalyzed Reductive Cycli-
zations and Couplings,” Angew. Chem., Int. Ed. 2004, 43, 3890. (b)
Hassan, A.; Krische, M. J. “Unlocking Hydrogenation for C–C Bond
Formation: A Brief Overview of Enantioselective Methods,” Org. Pro-
cess Res. Dev. 2011, 15, 1236. (c) Standley, E. A.; Tasker, S. Z.; Jensen, K.
L.; Jamison, T. F. “Nickel Catalysis: Synergy between Method Devel-
opment and Total Synthesis,” Acc. Chem. Res. 2015, 48, 1503. (d) Ngu-
yen, K. D.; Park, B. Y.; Luong, T.; Sato, H.; Garza, V. J.; Krische, M. J.
“Metal-Catalyzed Reductive Coupling of Olefin-Derived Nucleo-
philes: Reinventing Carbonyl Addition,” Science 2016, 354, No.
aah5133. (e) Kim, S. W.; Zhang, W.; Krische, M. J. “Catalytic Enantiose-
lective Carbonyl Allylation and Propargylation via Alcohol-Mediated
Hydrogen Transfer: Merging the Chemistry of Grignard and Sabatier,”
Acc. Chem. Res. 2017, 50, 2371.
(15) (a) Saxena, A.; Choi, B.; Lam, H. W. “Enantioselective Copper-
Catalyzed Reductive Coupling of Alkenylazaarenes with Ketones,” J.
Am. Chem. Soc. 2012, 134, 8428. (b) Wang, Y.-M.; Bruno, N. C.;
Placeres, A. L.; Zhu, S.; Buchwald, S. L. “Enantioselective Synthesis of
Carbo- and Heterocycles through a CuH-Catalyzed Hydroalkylation
Approach,” J. Am. Chem. Soc. 2015, 137, 10524. (c) Wang, Y.-M.; Buch-
wald, S. L. “Enantioselective CuH-Catalyzed Hydroallylation of Vi-
nylarenes,” J. Am. Chem. Soc. 2016, 138, 5024. (d) Bandar, J. S.; Ascic,
E.; Buchwald, S. L. “Enantioselective CuH-Catalyzed Reductive Cou-
pling of Aryl Alkenes and Activated Carboxylic Acids,” J. Am. Chem.
Soc. 2016, 138, 5821. (e) Friis, S. D.; Pirnot, M. T.; Buchwald, S. L.
“Asymmetric Hydroarylation of Vinylarenes Using a Synergistic Com-
bination of CuH and Pd Catalysis,” J. Am. Chem. Soc. 2016, 138, 8372.
(f) Zhou, Y.; Bandar, J. S.; Buchwald, S. L. “Enantioselective CuH-Cat-
alyzed Hydroacylation Employing Unsaturated Carboxylic Acids as
Aldehyde Surrogates,” J. Am. Chem. Soc. 2017, 139, 8126. (g) Gui, Y.-Y.;
Hu, N.; Chen, X.-W.; Liao, L.-L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu,
gue, D. J.; Singh, A.; Johnston, J. N. “Diastereo- and Enantioselective
Additions of -Nitro Esters to Imines for anti-,-Diamino Acid Syn-
thesis with -Alkyl-Substitution,” Chem. Sci. 2018, 9, 2336.
1
2
3
4
5
6
7
8
(8) For other enantioselective approaches to vicinal diamines, see:
(a) Ooi, T.; Sakai, D.; Takeuchi, M.; Tayama, E.; Maruoka, K. “Practical
Asymmetric Synthesis of Vicinal Diamines through the Catalytic
Highly Enantioselective Alkylation of Glycine Amide Derivatives,” An-
gew. Chem., Int. Ed. 2003, 42, 5868. (b) Kitagawa, O.; Yotsumoto, K.;
Kohriyama, M.; Dobashi, Y.; Taguchi, T. “Catalytic Asymmetric Syn-
thesis of Vicinal Diamine Derivatives through Enantioselective N-Al-
lylation Using Chiral -Allyl Pd-Catalyst,” Org. Lett. 2004, 6, 3605. (c)
Trost, B. M.; Fandrick, D. R.; Brodmann, T.; Stiles, D. T. “Dynamic Ki-
netic Asymmetric Allylic Amination and Acyl Migration of Vinyl Aziri-
dines with Imido Carboxylates,” Angew. Chem., Int. Ed. 2007, 46, 6123.
(d) Arai, K.; Lucarini, S.; Salter, M. M.; Ohta, K.; Yamashita, Y.; Koba-
yashi, S. “The Development of Scalemic Multidentate Niobium Com-
plexes as Catalysts for the Highly Stereoselective Ring Opening of
meso-Epoxides and meso-Aziridines,” J. Am. Chem. Soc. 2007, 129,
8103. (e) Yu, R.; Yamashita, Y.; Kobayashi, S. “Titanium(IV)/Tridentate
BINOL Derivative as Catalyst for meso-Aziridine Ring-Opening Reac-
tions: High Enantioselectivity, Strong Positive Non-Linear Effect and
Structural Characterization,” Adv. Synth. Catal. 2009, 351, 147. (f) Mac-
Donald, M. J.; Hesp, C. R.; Schipper, D. J.; Pesant, M.; Beauchemin, A.
M. “Highly Enantioselective Intermolecular Hydroamination of Allylic
Amines with Chiral Aldehydes as Tethering Catalysts,” Chem. – Eur. J.
2013, 19, 2597. (g) Wu, B.; Gallucci, J. C.; Parquette, J. R.; RajanBabu,
T. V. “Bimetallic Catalysis in the Highly Enantioselective Ring-Open-
ing Reactions of Aziridines,” Chem. Sci. 2014, 5, 1102. (h) Uraguchi, D.;
Kinoshita, N.; Kizu, T.; Ooi, T. “Synergistic Catalysis of Ionic Brønsted
Acid and Photosensitizer for a Redox Neutral Asymmetric -Coupling
of N-Arylaminomethanes with Aldimines,” J. Am. Chem. Soc. 2015, 137,
13768. (i) Izumi, S.; Kobayashi, Y.; Takemoto, Y. “Catalytic Asymmetric
Synthesis of anti-,-Diamino Acid Derivatives,” Org. Lett. 2016, 18,
696. (j) Chai, Z.; Yang, P.-J.; Zhang, H.; Wang, S.; Yang, G. “Synthesis
of Chiral Vicinal Diamines by Silver(I)-Catalyzed Enantioselective
Aminolysis of N-Tosylaziridines,” Angew. Chem., Int. Ed. 2017, 56, 650.
(k) Dumoulin, A.; Bernadat, G.; Masson, G. “Enantioselective Three-
Component Amination of Enecarbamates Enables the Synthesis of
Structurally Complex Small Molecules,” J. Org. Chem., 2017, 82, 1775.
(l) Mwenda, E. T.; Nguyen, H. N. "Enantioselective Synthesis of 1,2-
Diamines Containing Tertiary and Quaternary Centers through Rho-
dium-Catalyzed DYKAT of Racemic Allylic Trichloroacetimidates,"
Org. Lett. 2017, 19, 4814. (m) Perrotta, D.; Wang, M.-M.; Waser, J.
“Lewis Acid Catalyzed Enantioselective Desymmetrization of Donor–
Acceptor meso-Diaminocyclpropanes,” Angew. Chem., Int. Ed. 2018,
57, 5120.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) Li, K.; Shao, X.; Tseng, L.; Malcolmson, S. J. “2-Azadienes as Re-
agents for Preparing Chiral Amines: Synthesis of 1,2-Amino Tertiary
Alcohols by Cu-Catalyzed Enantioselective Reductive Couplings with
Ketones,” J. Am. Chem. Soc. 2018, 140, 598.
(10) For enantioselective examples see: (a) Ngai, M.-Y.; Barchuk, A.;
Krische, M. J. “Enantioselective Iridium-Catalyzed Imine Vinylation:
Optically Enriched Allylic Amines via Alkyne–Imine Reductive Cou-
pling Mediated by Hydrogen,” J. Am. Chem. Soc. 2007, 129, 12644. (b)
Zhou, C.-Y.; Zhu, S.-F.; Wang, L.-X.; Zhou, Q.-L. “Enantioselective
Nickel-Catalyzed Reductive Coupling of Alkynes and Imines,” J. Am.
Chem. Soc. 2010, 132, 10955. (c) Ascic, E.; Buchwald, S. L. “Highly Dia-
stereo- and Enantioselective CuH-Catalyzed Synthesis of 2,3-Disubsti-
tuted Indolines,” J. Am. Chem. Soc. 2015, 137, 4666. (d) Yang, Y.; Perry,
I. B.; Buchwald, S. L.” Copper-Catalyzed Enantioselective Addition of
Styrene-Derived Nucleophiles to Imines Enabled by Ligand-Con-
trolled Chemoselective Hydrocupration,” J. Am. Chem. Soc. 2016, 138,
9787. For a related redox neutral process, see: (e) Oda, S.; Franke, J.;
Krische, M. J. “Diene hydroaminomethylation via Ruthenium-Cata-
lyzed C–C Bond Forming Transfer Hydrogenation: Beyond Carbonyl-
ation,” Chem. Sci. 2016, 7, 136.
(11) For non-enantioselective examples, see: (a) Townes, J. A.; Ev-
ans, M. A.; Queffelec, J.; Taylor, S. J.; Morken, J. P. “Stereoselective
Synthesis of trans -Lactams through Iridium-Catalyzed Reductive
Coupling of Imines and Acrylates,” Org. Lett. 2002, 4, 2537. (b) Kong,
ACS Paragon Plus Environment