5308
C. L. Hamblett et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5300–5309
6. (a) Monneret, C. Eur. J. Med. Chem. 2005, 40, 1; (b) Kelly,
W. K.; O’ Connor, O. A.; Marks, P. A. Expert Opin.
Invest. Drugs 2002, 11, 1695.
7. (a) Miller, T. A.; Witter, D. J.; Belvedere, S. J. Med.
Chem. 2003, 46, 5097; (b) Miller, T. A. Expert Opin. Ther.
Pat. 2004, 14, 791.
HDAC8 substrate KI-178), incubated 15 (HDAC8) or 60
(HDACs 1, 2, 3, and 6) minutes at 37 ꢁC, before adding
50 lL of the appropriate development solution. The
development solution for HDACs 1, 2, 3, and 6 was
167·-diluted 20· Developer Concentrate (BIOMOL: KI-
105) plus 10 lM SAHA. For HDAC8, the development
solution was 100·-diluted 5· Developer Concentrate
(BIOMOL: KI-176) plus 10 lM SAHA. The assay was
read in a VictorV plate reader (Perkin-Elmer, Wellesley,
MA) at Ex 360 nm/Em 460 nm. The final substrate
concentration was 30 lM and final HDAC concentrations
in the reaction were 1 nM for HDACs 1, 3, and 6), 2 nM
for HDAC2, and 15 nM for HDAC8. Carboxy-terminal
FLAG-tagged human HDACs 1, 2, 3 (co-expressed with
the domain of SMRT), and 6 were overexpressed in
mammalian cells and affinity purified using an anti-Flag
antibody matrix, eluted from the matrix with 100 lg/mL
of a competing FLAG peptide in 20 mM Tris–Cl, pH 8.0,
150 mM NaCl, 10% glycerol, and protease inhibitor
cocktail (Roche cat. # 1836153).
8. (a) Richon, V. M.; Sandhoff, T. W.; Rifkind, R. A.;
Marks, P. A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97,
10014; (b) Marks, P. A.; Richon, V. M.; Breslow, R.;
Rifkind, R. A. Curr. Opin. Oncol. 2001, 13, 477; (c) Marks,
P. A.; Rifkind, R. A.; Richon, V. M.; Breslow, R. Clin.
Cancer Res. 2001, 7, 759; (d) Marks, P. A.; Rifkind, R. A.;
Richon, V. M.; Breslow, R.; Miller, T.; Kelly, W. K. Nat.
Rev. Cancer 2001, 1, 194; (e) Meinke, P. T.; Liberator, P.
Curr. Med. Chem. 2001, 8, 211; (f) Marks, P. A.; Miller,
T.; Richon, V. M. Curr. Opin. Pharmacol. 2003, 3, 344; (g)
Curtin, M.; Glaser, K. Curr. Med. Chem. 2003, 10, 2373.
9. (a) Marks, P. A.; Breslow, R. Nat. Biotechnol. 2007, 25,
84; (b) Kelly, W. K.; O’Connor, O. A.; Marks, P. A.
Expert Opin. Invest. Drugs 2002, 11, 1695; (c) Jenuwein,
T.; Allis, C. D. Science 2001, 293, 1074.
10. (a) Suzuki, T.; Ando, T.; Tsuchiya, K.; Fukazawa, N.;
Saito, A.; Mariko, Y.; Yamashita, T.; Nakanishi, O.
J. Med. Chem. 1999, 42, 3001; (b) Saito, A.; Yamashita,
T.; Mariko, Y.; Nosaka, Y.; Tsuchiya, K.; Ando, T.;
Suzuki, T.; Tsuruo, T.; Nakanishi, O. Proc. Natl. Acad.
Sci. 1999, 96, 4592; (c) Jaboin, J.; Wild, J.; Hamidi, H.;
Khanna, C.; Kim, C. J.; Robey, R.; Bates, S. E.; Thiele, C.
J. Cancer Res. 2002, 62, 6108.
11. (a) El-Beltagi, H. M.; Martens, A. C. M.; Lelieveld, P.;
Haroun, E. A.; Hagenbeek, A. Cancer Res. 1993, 53, 3008;
(b) Loprevite, M.; Tiseo, M.; Grossi, F.; Scolaro, T.;
Semino, C.; Pandolfi, A.; Favoni, R.; Ardizzoni, A. Oncol.
Res. 2005, 15, 39; (c) Foster, B. J.; Jones, L.; Wiegand, R.;
Lorusso, P. M.; Corbett, T. H. Invest. New Drugs 1997, 15,
187.
12. (a) Delorme, D.; Woo, S. H.; Vaisburg, A.; Moradel, O.;
Leit, S.; Raeppel, S.; Frechette, S.; Bouchain, G. PCT Int.
Appl. 2003, WO 2003024448; (b) Siu, L. L; Carducci, M.;
Pearce, L.; Maclean, M.; Sullivan, R.; Li, Z.; Kalita, A.;
Chen, E. X.; Pili, R.; Longstreth, J.; Martell, R. E.; Reid,
G. K. Abstracts of Posters, C77: Phase I Study of Isotype
Selective Histone Deactylase (HDAC) Inhibitor
MGCD0103 Given as Three-Times Weekly Oral Dose in
Patients (pts) with Advanced Solid Tumors, AACR-NCI-
EORTC International Conference on Molecular Targets
and Cancer Therapeutics: Discovery, Biology, and Clin-
ical Applications, Philadelphia, Pennsylvania, November
14–18, 2005.
13. The HDAC Fluorescent HDAC1 and HDAC8 Fluor-de-
Lys Activity Assays from BioMol Research Laboratories
(Plymouth Meeting, PA) provided the basis for our
HDAC activity assays. The assay buffer for the HDAC1
and HDAC2 assays consisted of 20 mM Hepes, pH 8.0,
137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 0.1 mg/mL
BSA; for the HDAC3 assay it was 20 mM Hepes, pH 8.0,
137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, and 0.25 mg/
ml BSA; for the HDAC6 assay, it was 20 mM Hepes, pH
7.4, 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, and
0.1 mg/mL BSA; and for the HDAC8 assay, it was 20 mM
Hepes, pH 8.0, 100 mM NaCl, 20 mM KCl, 1 mM MgCl2,
and 0.1 mg/mL BSA. HDAC enzymatic activities were
determined by the following procedure: 3· serial dilutions
of a 10 mM solution of inhibitor were performed in
DMSO followed by a 20· dilution into Assay buffer. 20 ll
HDAC was preincubated with 5 lL diluted compound at
RT for 10 min. The reaction was initiated by the addition
of 25 lL of the appropriate substrate (HDACs 1, 2, 3, and
6: fluor-de-Lys substrate KI-104; HDAC8: fluor-de-Lys
14. Seto, C. T.; Mathias, J. P.; Whitesides, G. M. J. Am.
Chem. Soc. 1993, 115, 1321.
15. HDAC cell-based proliferation results were determined by
the following procedure: HCT116 cells were plated in 96-
well plates at density of 1000 cells/well. The next day, cells
were treated with either 0.2% DMSO or increasing
concentrations of 7i dissolved in DMSO (final concentra-
tion DMSO 0.2%). After 72 h incubation at 37 ꢁC with 5%
CO2, viable cells were quantitated using Vialight Plus
(Cambrex) according to manufacturer’s instructions.
16. Experimental procedure for the synthesis of 7i: a mixture of
the Boc-protected chloronicotinamide (3.0 g, 8.6 mmol)
and benzyl-(2S)-2-methylpiperazine-1-carboxylate (6.0 g,
25.8 mmol) in PhMe (5 mL) was heated at 85 ꢁC for 12 h.
The reaction mixture was diluted with EtOAc (100 mL),
and washed with satd aq NaHCO3 (1 · 25 mL) and brine
(1 · 25 mL). The crude oil was purified by reverse phase
chromatography (25–100% MeCN/H2O with 0.05% TFA)
and formation of the desired Boc-protected piperazinyl
nicotinamide was confirmed by LC/MS (ESI+): calcd
[M+H]+ 546.3, exp. 546.3. The Boc-protected piperazinyl
nicotinamide was treated with TFA (4 mL) in CH2Cl2
(8 mL) and after 20 min of stirring at room temperature,
the reaction mixture was concentrated and purified by
reverse phase chromatography (15–75% MeCN/H2O with
0.05% TFA). The appropriate fractions were combined,
diluted with EtOAc (150 mL) and washed with satd aq
NaHCO3 (1 · 50 mL) and brine (1 · 50 mL). The organic
layer was dried over Na2SO4, filtered, and concentrated to
give the desired nicotinamide 7i: 1H NMR (600 MHz,
DMSO-d6) d 9.42 (s, 1H), 8.69 (s, 1H), 8.05 (d, J = 8.8 Hz,
1H), 7.34–7.29 (m, 5H), 7.10 (d, J = 7.3 Hz, 1H), 6.92 (t,
J = 7.3 Hz, 1H), 6.85 (d, J = 9.1 Hz, 1H), 6.73 (d,
J = 7.9 Hz, 1H), 6.55 (m, 1H), 5.11–4.85 (m, 2H), 4.83 (br
s, 2H), 4.26-4.21 (m, 3H), 3.85 (dd, J = 5.0 Hz, 3.5 Hz, 1H),
3.34–3.22 (m, 2H), 3.20–3.00 (m, 1H), 1.07 (d, J = 6.5 Hz,
3H); MS (ESI+): calcd [M+H]+ 446.2, exp. 446.2.
17. (a) Heltweg, B.; Dequiedt, F.; Marshall, B. L.; Brauch, C.;
Yoshida, M.; Nishino, N.; Verdin, E.; Jung, M. J. Med.
Chem. 2004, 47, 5235; (b) Curtin, M. L. Expert Opin. Ther.
Pat. 2002, 12, 1375.
18. HDAC8 crystal structure (1T64) Somoza, J. R.; Skene, R.
J.; Katz, B. A.; Mol, C.; Ho, J. D.; Jennings, A. J.; Luong,
C.; Arvai, A.; Buggy, J. J.; Chi, E.; Tang, J.; Sang, B.-C.;
Verner, E.; Wynands, R.; Leahy, E. M.; Dougan, D. R.;
Snell, G.; Navre, M.; Knuth, M. W.; Swanson, R. V.;
McRee, DE.; Tari, L. W. Structure 2004, 12, 1325.
19. HDAC8 crystal structure (1T64) (a) Somoza, J. R.; Skene,
R. J.; Katz, B. A.; Mol, C.; Ho, J. D.; Jennings, A. J.;