10.1002/chem.202000107
Chemistry - A European Journal
FULL PAPER
and transmission electron microscopy and dynamic light
scattering measurements. Our results may encourage the effort
to develop new class of fluorescence probes and functional dye
aggregates in water.
We acknowledge the National Natural Science Foundation of
China (Grant No. 21674079 and Grant No. 21975177) for
financial support.
Conflict of interest
Experimental Section
The authors declare no conflict of interest.
Dye 2: 3, 4, 5-tris(3-(2-(2-ethoxyethoxy)ethoxy)-1-propyl)-aniline (0.22 g,
0.45 mmol) , monoanhydride monoimide (0.13 g, 0.23 mmol) and zinc
acetate (0.04 g, 0.22 mmol) were mixed with imidazole (3.47 g, 0.05 mol).
The reaction mixture was heated under nitrogen at 140C. After 12 hr,
the reaction mixture was cooled to room temperature. 1M HCl (75 mL)
was added to the above reaction mixture. The resulting mixture was
extracted with dichloromethane (75 mL) for several times. Then the
solution was dried with anhydrous MgSO4 and concentrated under
reduced pressure, the crude product was purified by silica gel column
chromatography using dichloromethane/methanol (40/1, v/v) as eluent to
give a red solid (150mg, 60%). Rf = 0.31 (CH2Cl2/CH3OH=20/1, v/v). 1H
NMR (400MHz, CDCl3, ppm)(Figure S5): = 8.56-8.72 (m, 8H, ArH in
perylene ring), 7.04 (s, 2H, ArH in phenyl ring), 4.21 (t, J=7.6 Hz, 2H, -
NCH2-), 3.73-3.54 (m, 32H, 15-OCH2-, -CH2OH), 3.51 (q, J=2.8 Hz,
J=17.2 Hz, 6H, 3-OCH2CH3), 2.78 (t, J=8.00 Hz, 6H, 3-PhCH2-), 2.00-
1.93 (m, 4H, 2-PhCH2CH2-), 1.91- 1.77(m, 4H, -PhCH2CH2-, -NCH2CH2),
1.54-1.46(m, 4H, -CH2CH2CH2OH) 1.23 (t, J= 7.2 Hz, 6H, 2-CH3), 1.17 (t,
J= 6.8 Hz, 3H, -CH3). MALDI-TOF MS (matrix: α-cyano-4-
hydroxycinnamic acid) calculated for C83H94N2O15 1088.561 m/z, found
1111.737 [M+Na]+.
Keywords: Fluorescence • Fluorescence resonance energy
transfer (FRET) • Perylene bisimides • Supramolecular assembly
Aggregates • Dyes
[1]
a) A. Ajayaghosh, V.K. Praveen, C. Vijayakumar, S. J. George, Angew.
Chem., Int. Ed. 2007, 46, 6260-6265. b) A. Ajayaghosh, V. K. Praveen,
C. Vijayakumar, Chem. Soc. Rev. 2008, 37, 109-122. c) P. Rajdev, S.
Ghosh, J. Phys. Chem. B 2019, 123, 327-342.
[2]
[3]
a) D. Spitzer and P. Besenius, Supramolecular Chemistry in Water, Vol.
8 (Eds.: S. Kubik), VCH, Weinheim 2019, pp. 285-336. b) T. Polivka, H.
A. Frank, Acc. Chem. Res. 2010, 43, 1125-1134.
a) J. Y. Shi, C. Y. Chan, Y. T. Pang, W. W. Ye, F. Tian, J. Lyu, Y.
Zhang, M. Yang, Biosens. Bioelectron. 2015, 67, 595-600; b) X. L.
Zhang, Y. Xiao, X. H. Qian, Angew. Chem., Int. Ed. 2008, 47, 8025-
8029; c) L. Yuan, W. Y. Lin, K. B. Zheng, S. S. Zhu, Acc. Chem. Res.
2013, 46, 1462-1473.
[4]
a) B. Schuler, W. A. Eaton, Curr. Opin. Struct. Biol. 2008, 18, 16-26; b)
B. Prevo, E. J. G. Peterman, Chem. Soc. Rev. 2014, 43, 1144-1155.c)
J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer,
New York, 2006, pp. 205-472.
Dye 3: 1-Pyrenebutyric acid 1 (50 mg, 0.17 mmol), 2 (169 mg, 0.15
mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride
(EDCꞏHCl) (150 mg, 0.79 mmol) and 4-dimethylaminopyridine (DMAP)
(10 mg, 0.08 mmol) were dissolved in dichloromethane (10 mL). The
reaction mixture was stirred at room temperature. After 12 hr, the
reaction mixture was concentrated under reduced pressure. Then the
residue was extracted with water/dichloromethane. The resulting
dichloromethane solution was dried with anhydrous MgSO4 and
concentrated under reduced pressure, the crude product was purified by
silica gel column chromatography using dichloromethane/methanol (70/1)
as eluent to give a red solid (163 mg, 80%). Rf = 0.26 (CH2Cl2/CH3OH =
40/1). 1H-NMR (400MHz, CDCl3, ppm)(Figure S6): = 8.56-8.45 (dd,
J=7.6 Hz, J=37.2 Hz, 4H, ArH in perylene ring), 8.29-8.36 (dd, J=3.6 Hz,
J=20.4 Hz, 4H, ArH in perylene ring), 7.69-8.10(m, 9H, ArH in pyrene
ring), 7.05 (s, 2H, ArH in phenyl ring), 4.18 (m, 4H, -N-(CH2)5CH2-), 4.15
(t, J=6 Hz, 2H, -NCH2-), 3.75-3.44 (m, 36H, 18-OCH2-), 3.16 (t, J=7.6 Hz,
2H, Ar(perylene ring)CH2-), 2.80 (m, 6H, 3ArCH2-), 2.43 (t, 2H, J=6.8 Hz,
Ar(perylene ring)-CH2CH2CH2), 2.13-2.01(m, 2H, -NCH2CH2), 2.01-
1.91(m, 4H, -PhCH2CH2-), 1.91-1.77(m, 4H, Ar(perylene ring)-CH2CH2-,
[5]
[6]
[7]
J. Tang, B. Kong, H. Wu, M. Xu, Y. C. Wang, Y. L. Wang, D. Y. Zhao,
G. F. Zheng, Adv. Mater. 2013, 25, 6569-6574.
C. Vijayakumar, V. K. Praveen, A Ajayaghosh, Adv. Mater. 2009, 21,
2059-2063.
a) X. Zhang, S. Rehm, M. M. Safont-Sempere, F. Wurthner, Nat. Chem.
2009, 1, 623-629; b) F. Li, X. H. Li, Y. Wang, X. Zhang. Angew Chem
Int Ed 2019, 58, 17994-18002; c) I. Z. Steinberg, Annu. Rev. Biochem.
1971, 40, 83-114; d) R. P. Haugland, J. Yguerabide, L. Stryer, Proc.
Natl. Acad. Sci. U. S. A. 1969, 63, 23-30.
[8]
[9]
I. H. Stein, V. Schuller, P. Bohm, P. Tinnefeld, T. Liedl,
ChemPhysChem 2011, 12, 689-695.
a) S. S. Babu, K. K. Kartha, A. Ajayaghosh, J. Phys. Chem. Lett. 2010,
1, 3413-3424; b) V. K. Praveen, S. J. George, R. Varghese, C.
Vijayakumar, A. Ajayaghosh, J. Am. Chem. Soc. 2006, 128, 7542-7550;
c) A. Ajayaghosh, C. Vijayakumar, V. K. Praveen, S. S. Babu, R.
Varghese, J. Am. Chem. Soc. 2006, 128, 7174-7175.
[10] a) G. J. Qi, L. L. Jiang, Y. Y. Zhao, Y. Q. Yang, X. Y. Li, Phys. Chem.
Chem. Phys. 2013, 15, 17342-17353; b) A. Sautter, B. K. Kaletas, D. G.
Schmid, R. Dobrawa, M. Zimine, G. Jung, I. H. M. van Stokkum, L. De
Cola, R. M. Williams, F. Wurthner, J. Am. Chem. Soc. 2005, 127, 6719-
6729.
PhCH2CH2-), 1.77-1.69(m, 2H, -NCH2CH2CH2-), 1.56-1.47(m, 4H,
-
N(CH2)3CH2CH2), 1.23 (t, J=6.8 Hz, 3H, -CH3), 1.17 (t, J= 6.8 Hz, 6H, 2-
CH3). 13C-NMR (CDCl3, ppm) (Figure S7): = 173.45, 163.38, 163.11,
141.50, 141.19, 138.83, 135.71, 134.21, 134.10, 133.86, 132.60, 131.09,
131.04, 130.74, 130.56, 129.60, 129.14, 128,62, 128.36, 127.24, 127.09,
127.04, 126.83, 126.39, 125.63, 124.68, 124.64, 124.57, 124.52, 123.16,
123.09, 122.76, 122.71, 122.60, 122.56, 71.26, 70.81, 70.71, 70.65,
70.56, 70.32, 70.14, 70.08, 69.91, 69.84, 68.47, 66.67, 66.60, 64.33,
40.33, 33.96, 32.60, 30.92, 29.99, 29.30, 28.32, 27.98, 26.74, 26.42,
25.66, 15.20, 15.15. MALDI-TOF MS (matrix: α-cyano-4-hydroxycinnamic
acid) (Figure S9) calculated for C83H94N2O15, 1358.67m/z, found 1381.68
[M+Na]+, 1397.69[M+K]+. IR (KBr pellet, cm-1) (Figure S10): 2953.72
(νCH3), 2920.78 (νanti,CH2), 2851.71 (νsys,CH2), 1730.76, 1694.48, 1655.29,
1593.30, 1577.87, 1460.39, 1436.93, 1402.38, 1356.30, 1345.55,
1254.06, 1106.18, 1023.62, 950.53, 847.19, 808.61, 743.90.
[11] a) Z. Chen, V.Stepanenko, V. Dehm ,P.Prins, L. D. A. Siebbeles, J.
Seibt, P.Marquetand, V. Engel, F. Würthner, Chem. Eur. J. 2007, 13,
436-449. b) C. Li, H. Wonneberger, Adv. Mater. 2012, 24, 613-636.
[12] W. Herbst, K. Hunger, Industrial Organic Pigments, VCH, Weinheim,
2004, 474-482.
[13] a) K. Y. Chen, T. J. Chow, Tetrahedron Lett. 2010, 51, 5959-5963; b) R.
K. Gupta, D. S. S. Rao, S. K. Prasad, A. S. Achalkumar, Chem. Eur. J.
2018, 24, 3566-3575.
[14] a) J. L. Li, F. Dierschke, J. S. Wu, A. C. Grimsdale, K. Mullen, J. Mater.
Chem. 2006, 16, 96-100; b) X. D. Jiang, Y. H. Xu, X. H. Wang, F. Yang,
A. D. Zhang, C. Li, W. Ma, W. W. Li, Polym. Chem. 2017, 8, 3300-
3306; c) D. Basak, D. S. Pal, T. Sakurai, S. Yoneda, S. Seki, S. Ghosh,
Phys. Chem. Chem. Phys. 2017, 19, 31024-31029; d) E. Kozma, M.
Catellani, Dyes Pigm. 2013, 98, 160-179.
[15] a) R. K. Gupta, D. S. Shankar Rao, S. K. Prasad, A. S. Achalkumar,
Chem. Eur. J. 2018, 24, 3566–3575. b) Y. Wang, Q. Zhang, F. Li, J.
Gong, X. Zhang, Dyes Pigm. 2020, 172, 107823. c) M. Matussek, M.
Filapek, P. Gancarz, S. Krompiec, J. G.Małecki, S. Kotowicz, M. Siwy,
Acknowledgements
7
This article is protected by copyright. All rights reserved.