Page 5 of 13
ACS Catalysis
and Steric Effects Expands the Reaction Scope. ACS Catal. 2018, 8,
Ritchie, G. D. A Review of the Effects of Uranium and Depleted
Uranium Exposure on Reproduction and Fetal Development.
Toxicol. Ind. Health 2001, 17, 180–191. (b) Domingo, J. L.
Reproductive and Developmental Toxicity of Natural and Depleted
Uranium: A Review. Reprod. Toxicol. 2001, 15, 603–609.
701–713. (c) Suzuki, K.; Mizuno, N.; Yamaguchi, K. Polyoxometalate
Photocatalysis for Liquid-Phase Selective Organic Functional
Group Transformations. ACS Catal. 2018, 8, 10809−10825. (d)
Tanielian, C. Decatungstate Photocatalysis. Coord. Chem. Rev. 1998,
178–180, 1165−1181. (e) Tzirakis, M. D.; Lykakis, I. N.;
Orfanopoulos, M. Decatungstate as an Efficient Photocatalyst in
Organic Chemistry. Chem. Soc. Rev. 2009, 38, 2609−2621.
(7) Li, H.; Zhang, M.-T. Visible-light-mediated C(sp3)-H activation
by photo-induced hydrogen-atom transfer. J. Photochem. Photobiol.
A: Chem. 2018, 355, 109–113.
1
2
3
4
5
6
7
8
(15) (a) Rabinowitch, E.; Belford, R. L. Spectroscopy and
Photochemistry of Uranyl Compounds, The Macmillan Company,
Pergamon Press, New York, 1964. (b) Jørgensen, C. K.; Reisfeld, R.
Uranyl photophysics. Top. Inorg. Phys. Chem. 1982, 50, 121–171.
(c) Burrows, H. D.; Kemp, T. J. The Photochemistry of the Uranyl
ion. Chem. Soc. Rev. 1974, 3, 139–165. (d) Ghosh, R.; Mondal, J. A.;
Ghosh, H. N.; Palit, D. K. Ultrafast Dynamics of the Excited States of
the Uranyl Ion in Solutions. J. Phys. Chem. A 2010, 114, 5263–5270.
(e) Wang, W.-D; Bakac, A.; Espenson, J. H. Uranium(VI)-Catalyzed
Photooxidation of Hydrocarbons with Molecular Oxygen. Inorg.
Chem. 1995, 34, 6034–6039. (f) Mao, Y.; Bakac, A. Photocatalytic
Oxidation of Toluene to Benzaldehyde by Molecular Oxygen. J. Phys.
Chem. 1996, 100, 4219–4223.
9
(8) Hartwig, J. F. Catalyst-Controlled Site-Selective Bond
Activation. Acc. Chem. Res. 2017, 50, 549–555.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(9) (a) Xia, J.-B.; Zhu, C.; Chen, C. Visible Light-Promoted Metal-
Free C–H Activation: Diarylketone-Catalyzed Selective Benzylic
Mono- and Difluorination. J. Am. Chem. Soc. 2013, 135, 17494–
17500. (b) Xia, J.-B.; Zhu, C.; Chen, C. Visible Light-Promoted Metal-
free sp3-C–H Fluorination. Chem. Commun. 2014, 50, 11701–
11704.
(10) (a) West, J. G.; Bedell, T. A.; Sorensen, E. J. The Uranyl Cation
as a Visible-Light Photocatalyst for C(sp3)−H Fluorination. Angew.
Chem. Int. Ed. 2016, 55, 8923–8927. (b) Wu, L.; Cao, X.; Chen, X.;
Fang, W.; Dolg, M. Visible-Light Photocatalysis of C(sp3)-H
Fluorination by the Uranyl Ion: Mechanistic Insights. Angew. Chem.
Int. Ed. 2018, 57, 11812–11816.
(16) McGlynn, S. P.; Smith, J. K. The Electronic Structure, Spectra,
and Magnetic Properties of Actinyl Ions: Part I. The Uranyl Ion. J.
Mol. Spectrosc. 1961, 6, 164–187.
(17) (a) Matsushima, R. Mechanism of Quenching of the Uranyl
Fluorescence by Organic Compounds. J. Am. Chem. Soc. 1972, 94,
6010–6016. (b) Sakuraba, S.; Matsushima, R. Photochemical
Reactions of Uranyl Ions with Organic Compounds. II. The
Mechanism of the Photo-Oxidation of Alcohols by Uranyl Ions. Bull.
Chem. Soc. Jpn. 1970, 43, 2359–2363. (c) Sakuraba, S.; Matsushima,
R. Photochemical Reactions of Uranyl Ions with Organic
Compounds. IV. The Uranyl Fluorescence Quenching by Aliphatic
Alcohols. Bull. Chem. Soc. Jpn. 1971, 44, 2915–2918. (d) Matushima,
R.; Mori, K.; Suzuki, M. Photoreactions of the Uranyl Ion with
Arylaldehydes in Solution. Bull. Chem. Soc. Jpn. 1976, 49, 38–41.
(18) Allgäuer, D. S.; Jangra, H.; Asahara, H.; Li, Z.; Chen, Q.; Zipse,
H.; Ofial, A. R.; Mayr, H. Quantification and Theoretical Analysis of
the Electrophilicities of Michael Acceptors. J. Am. Chem. Soc. 2017,
139, 13318−13329.
(11) Kamijo, S.; Kamijo, K.; Maruoka, K.; Murafuji, T. Aryl Ketone
Catalyzed Radical Allylation of C(sp3)–H Bonds under
Photoirradiation. Org. Lett. 2016, 18, 6516–6519.
(12) Fan, X.-Z.; Rong, J.-W.; Wu, H.-L.; Zhou, Q.; Deng, H.-P.; Tan,
J. D.; Xue, C.-W.; Wu, L.-Z.; Tao, H.-R.; Wu, J. EosinꢀY as a Direct
Hydrogen-Atom Transfer Photocatalyst for the Functionalization
of C-H Bonds. Angew. Chem. Int. Ed. 2018, 57, 8514–8518.
(13) De Waele, V.; Poizat, O.; Fagnoni, M.; Bagno, A.; Ravelli, D.
Unraveling the Key Features of the Reactive State of Decatungstate
Anion in Hydrogen Atom Transfer (HAT) Photocatalysis. ACS Catal.
2016, 6, 7174–7182.
(14) Although the handling of uranium salts might trigger an
instinctive concern, it is a common position that the main risks
deriving from their use are associated with chemical toxicity, and
not from radioactivity. Thus, a judicious use of PPE (Personal
Protection Equipment) makes most common uranium compounds,
such as uranyl nitrate or uranyl acetate, no more noxious than any
other heavy metal complex. See: (a) Arfsten, D. P.; Still, K. R.;
(19) Magri, D. C.; Workentin, M. S. Redox Properties of Radicals.
In Encyclopedia of Radicals in Chemistry, Biology and Materials;
Chatgilialoglu, C., Studer, A., Eds.; John Wiley & Sons, 2012, DOI:
10.1002/9780470971253.rad002.
(20) Luo, Y.-R. Handbook of Bond Dissociation Energies in
Organic Compounds, CRC Press, Boca Raton, 2003.
ACS Paragon Plus Environment