C O M M U N I C A T I O N S
Chart 1. Overview of Conversions and C-F Bond Cleavage in
the Hydrogenations of 1a
We have shown that asymmetric hydrogenation of fluorinated
olefins with iridium complexes is possible, often with low catalyst
loadings and with low levels of defluorination. Further studies to
prepare and evaluate other substrates, and to design complexes that
are able to hydrogenate a broader range of fluorinated olefins, are
ongoing in our group.
Acknowledgment. The article is dedicated to Prof. Miguel Yus
on the occasion of his 60th birthday. The Swedish Research Council
(VR), Astra&Zeneca, and Ligbank (activity 3, Contract FP6-
505267-1) supported this work. We also would like to thank Dr. I.
J. Munslow and Dr. T. Church for careful reading of the manuscript,
and Assoc. Prof. A. Gogoll for the help with the 1H-19F NOE
experiments.
Supporting Information Available: Experimental details and
spectral data for the preparation of the reported compounds. This
a Conditions: 100 Bar H2, 72 h, 40 °C in CH2Cl2.
References
(1) (a) Brown, J. M. In ComprehensiVe Asymmetric Catalysis; Jacobsen, E.
N., Pfaltz, A., Yamamoto, H., Eds.; Springer-Verlag: Berlin, 1999; Vol.
I, pp 121-182. (b) Review: Cui, X.; Burgess, K. Chem. ReV. 2005, 105,
3272-3296.
and 24 h at room temp. The ee’s varied from poor (29%, entry 1)
to good (87% for entry 2 and 80% for entry 3).
Catalysts I-III all have a nitrogen atom as the linker between
the ligand backbone and the phosphorus-containing group, whereas
IV and V have a methylene group and an oxygen atom, respectively.
Given that the azanorbornyl-ligand-based complexes I-III dis-
played overall better activity and caused less defluorination than
complexes IV and V, we reasoned that an oxazole or thiazole
scaffold containing an amine linker would be an interesting
candidate to be evaluated in this type of reactions. Because thiazole-
based catalysts have generally performed better than the oxazole-
based catalysts for olefin hydrogenation,5i,k thiazole was used as
the backbone for the new amine-linked ligand. The synthesis of
complex VI is outlined in Scheme 2.
(2) Ka¨llstro¨m, K.; Munslow, I.; Andersson, P. G. Chem.sEur. J. 2006, 12,
3194-3200.
(3) Crabtree, R. H.; Felkin, H.; Morris, G. E. J. Organomet. Chem. 1977,
141, 205-215.
(4) Lightfoot, A.; Schnider, P.; Pfaltz, A. Angew. Chem. 1998, 110, 3047-
3050; Angew. Chem., Int. Ed. 1998, 37, 2897-2899.
(5) (a) Blankenstein, J.; Pfaltz, A. Angew. Chem., Int. Ed. 2001, 40, 4445-
4447. (b) Menges, F.; Neuburger, M.; Pfaltz, A. Org. Lett. 2002, 4, 4713-
4716. (c) Hou, D.-R.; Burgess, K. Org. Lett. 1999, 1, 1745-1747. (d)
Tang, W.; Wang, W.; Zhang, X. Angew. Chem., Int. Ed. 2003, 42, 943-
946. (e) Xu, G.; Gilbertson, S. R. Tetrahedron Lett. 2003, 953-955. (f)
Bunlaksananurson, T.; Polborn, K.; Knochel, P. Angew. Chem., Int. Ed.
2003, 42, 3941-3943. (g) Pfaltz, A.; Blankenstein, J.; Hilgraf, R.;
Ho¨rmann, E.; McIntyre, S.; Menges, F.; Scho¨nleber, M.; Smidt, S. P.;
Wu¨stenberg, B.; Zimmermann, N. AdV. Synth. Catal. 2003, 345 (1, 2),
33-43. (h) Durry, W. J., III; Zimmerman, N.; Keenan, M.; Hayashi, M.;
Kaiser, S.; Goddard, R.; Pfaltz, A. Angew. Chem., Int. Ed. 2004, 43, 70-
74. (i) Ka¨llstro¨m, K.; Hedberg, C.; Brandt, P.; Bayer, A.; Andersson, P.
G. J. Am. Chem. Soc. 2004, 126, 14308-14309. (j) Trifonova, A.; Diesen,
J. S.; Andersson, P. G. Chem.sEur. J. 2006, 12, 2318-2328. (k) Hedberg,
C.; Ka¨llstro¨m, K.; Brandt, P.; Hansen, L. K.; Andersson, P. G. J. Am.
Chem. Soc. 2006, 128, 2995-3001. (l) Hou, D.-R.; Reibenspies, J.;
Burgess, K. J. Org. Chem. 2001, 66, 206-215. (m) Trifonova, A.; Diesen,
J. S.; Chapman, C. J.; Anderson, P. G. Org. Lett. 2004, 6, 3825-3827.
(6) (a) Patrick, G. L. An Introduction to Medicinal Chemistry, 3rd ed.; Oxford
University Press: Oxford, U.K., 2005; Chapter 9. (b) Review: Butler,
M. S. J. Nat. Prod. 2004, 67, 2141-2153.
Scheme 2. Synthesis of Complex VIa
(7) Quotation by M. Schlosser in the article “Fabulous Fluorine” by Thayer,
A. M. Chem. Eng. News 2006, June 5, 15-24.
(8) (a) Review: Patani, G. A.; LaVoie, E. J. Chem. ReV. 1996, 96, 3147-
3176. (b) Minireview Ojima, I. Chem. Bio. Chem. 2004, 5, 628-635. (c)
Minireview Bo¨hm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.;
Mu¨ller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637-643.
(9) (a) Hintermann, L.; Togni, A. Angew. Chem., Int. Ed. 2000, 39, 4359-
4362. (b) Kim, D. Y.; Park, E. J. Org. Lett. 2002, 4, 545-547. (c) Ma,
J.-A.; Cahard, D. Tetrahedron: Asymmetry 2004, 15, 1007-1011. (d)
Shibata, N.; Ishimaru, T.; Nagai, T.; Kohno, J.; Toru, T. Synlett 2004,
10, 1703-1706. (e) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan,
D. W. C. J. Am. Chem. Soc. 2005, 127, 15051-15053. (f) Hamashima,
Y.; Suzuki, T.; Shimura, Y.; Shimizu, T.; Umebayashi, N.; Tamura, T.;
Sasamoto, N.; Sodeoka, M. Tetrahedron Lett. 2005, 46, 1447-1450. (g)
Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc.
2004, 126, 4108-4109. (h) Beeson, T. D.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2005, 127, 8826-8828.
a Conditions and reagents: See Supporting Information.
Complex VI was screened with the trisubstituted substrates and
showed excellent selectivity, ee g 99% (entries 2 and 3).
Despite that tetrasubstituted olefins have proven difficult to hy-
drogenate catalytically, tetrasubstituted fluoroolefins underwent
hydrogenation (100 bar, 40 °C, 72 h) with >99% diastereomeric
excess (de). Selectivity is increased from 29 to 57% ee (entries 1
and 4) for complex I when a methyl group is added to the substrate.
For complex VI, the selectivities were surprisingly lower with the
methylated substrates. Oddly, it did not catalyze the reaction of
entry 1, whereas the tetrasubstituted equivalent (entry 4) gave 30%
conversion. Hydrogenations of the tetrasubstituted olefins all
proceeded via a clean syn-addition of H2 across the double bond.
(10) Review: Mikami, K.; Itoh, Y.; Yamanaka, M. Chem. ReV. 2004, 104,
1-16.
(11) Nelson, T. D.; Kress, M. H.; Krska, S. W.; Mitten, J. V.; Sun, Y. PCT
Int. Appl. 2006, WO 2006069287 A1, CAN 145:103564.
(12) Allmendinger, T.; Dandois, C.; Walliser, B. Tetrahedron Lett. 1991, 24,
2735-2736.
JA0686763
9
J. AM. CHEM. SOC. VOL. 129, NO. 15, 2007 4537