2346
P. Diana et al. / Bioorg. Med. Chem. Lett. 17 (2007) 2342–2346
Table 2 (continued)
cellular molecular target contributes to the antiprolif-
erative ability of 10c.
Cell lines
GI50 (lM)b
MDA-MB-231/ATCC
HS 578T
4.20
11.7
13.7
11.0
11.1
Acknowledgments
This work was financially supported by Ministero
MDA-MB-435
BT-549
T-47D
`
dell’Istruzione dell’Universita e della Ricerca. We thank
a Data obtained from NCI’s in vitro disease-oriented tumor cell screen.
b The cytotoxicity GI50 values are the concentrations corresponding to
50% growth inhibition of tumor cells.
the National Cancer Institute (Bethesda, MD) and espe-
cially Dr V. L. Narayanan and his team for the antitu-
mor tests reported in this paper.
c Not determined.
References and notes
1. Alvarez, M.; Salas, M. Heterocycles 1991, 32, 1391.
2. Sakem, S.; Sun, H. H. J. Org. Chem. 1991, 56, 4304.
3. Kawasaki, I.; Yamashita, M.; Ohta, S. Chem. Pharm. Bull.
1996, 44, 1831.
Relaxed DNA•
4. Gu, X.; Wan, X.; Jiang, B. Bioorg. Med. Chem. Lett. 1999,
9, 569.
Supercoiled DNA•
5. Jiang, B.; Gu, X. Bioorg. Med. Chem. Lett. 2000, 8, 363.
6. Jiang, B.; Xiong, X.; Yang, C. Bioorg. Med. Chem. 2001,
9, 1149.
7. Jiang, B.; Xiong, X.; Yang, C. Bioorg. Med. Chem. Lett.
2001, 11, 475.
a
b
c
d
e
f
g
Figure 1. Effect of derivative 10c on the relaxation of supercoiled
plasmid DNA by human recombinant Topoisomerase II.14
8. Xiong, W.; Yang, C.; Jiang, B. Bioorg. Med. Chem. 2001,
9, 1773.
Moreover, we performed experiments on the ability of
derivative 10c to interfere with the catalytic activity of
DNA Topoisomerase II.
9. Jones, R. A.; Karatza, M.; Voro, T. N.; Civeir, P. U.;
Franck, A.; Ozturk, O.; Seaman, J. P.; Whitmore, A. P.;
Williamson, D. J. Tetrahedron 1996, 52, 8707.
10. H and 13C NMR, IR, elemental analysis (C, H, and N),
and melting point determination. For example, for com-
Indeed, it was widely demonstrated that a number of
anticancer drugs exert their antiproliferative effect by
inhibiting this nuclear enzyme.13
pound 10c: mp 201–202 °C; IR 3402 (NH) cmꢀ1
;
1H
NMR (CDCl3): d 3.84 (s, 3H, OCH3), 6.85 (dd, J = 2.0,
8.8 Hz, 1H, H-6), 7.31 (s, 1H, H-30), 7.37 (d, J = 8.8 Hz,
1H, H-7) 7.39 (s, 1H, H-2), 7.68 (d, J = 2.0 Hz, 1H, H-4),
11.3 (s, 1H, NH); 13C NMR (CDCl3): d 55.3 (q), 100.9 (d),
109.8 (s), 111.9 (d), 112.7 (d), 121.9 (d), 123.5 (d), 125.0 (s),
131.7 (s), 134.2 (s), 154.0 (s).
Figure 1 shows the relaxation of supercoiled plasmid
DNA mediated by Topoisomerase II in the absence
(lane b) and in the presence of increasing concentra-
tions of 10c (lanes c–f). The results obtained indicate
a somewhat weaker inhibitory capacity at the lower
concentrations taken into consideration (1 and
10 lM, lanes c and d, respectively). The inhibitory ef-
fect increases in a dose-dependent manner and at
200 lM concentration is comparable with that induced
by the well-known Topoisomerase II inhibitor m-am-
sacrine, used at 8 lM concentration (compare lanes f
and g). Considering that the antiproliferative effect
exerted by 10c for a number of cell lines is in the
0.34–21.8 lM range (Tables 1 and 2), the inhibition
of Topoisomerase II does not seem the main cause
of cell death, even though an undoubtable effect on
the enzyme occurs. Topoisomerase II modifies the
topological states of DNA and a number of antiprolif-
erative drugs, which affect its catalytic activity, are
known to be DNA binders.13 Therefore, it appeared
of interest to investigate on the ability of 10c to form
a molecular intercalative complex by means of flow
linear dichroism experiments, performed with salmon
testes DNA. The spectra of DNA alone and in pres-
ence of 10c do not evidence any detectable difference
suggesting the incapacity of the test derivative to
intercalate inside the macromolecule (data not shown).
In conclusion, it is conceivable that more than one
11. (a) Grever, M. R.; Sherpartz, S. A.; Chabner, B. A. Semin.
Oncol. 1992, 19, 622; (b) Monks, A. P.; Scudiero, D. A.;
Skehan, P.; Shoemaker, R.; Paull, K. D.; Vistica, D.; Hose,
C.; Langley, J.; Croniste, P.; Vaigro-Woiff, A.; Gray-
Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. R.
J. Natl. Cancer Inst. 1991, 83, 757; (c) Weinstein, J. N.;
Meyers, T. G.; O’Connor, P. M.; Friend, S. H.; Fornace, A.
J., Jr.; Kohn, K. W.; Fojo, T.; Bates, S. E.; Rubinstein, L. V.;
Anderson, N. L.; Boulamwini, J. K.; van Osdol, W. W.;
Monks, A. P.; Scudiero, D. A.; Sausville, E. A.; Zaharevitz,
D. W.; Bunow, B.; Viswanadhan, V. N.; Johnson, G. S.;
Wittes, R. E.; Paull, K. D. Science 1997, 275, 343.
12. Paull, K. D.; Shoemaker, R. H.; Hodes, L.; Monks, A.;
Scudiero, D. A.; Rubistein, L.; Plowman, J.; Boyd, M. R.
J. Natl. Cancer Inst. 1989, 81, 1088.
13. D’Arpa, P.; Liu, L. F. Biochim. Biophys. Acta 1989, 989,
163.
14. Supercoiled pBR322 DNA (0.25 lg, lane a) was incubated
for 60 min at 37 °C with Topoisomerase II (1 U) in the
absence (lane b) or presence of 10c at 1, 10, 100, and
200 lM (lanes c–f, respectively). Addition of m-amsacrine
8 lM (lane g) was used as reference. DNA samples were
separated by electrophoresis on a 1% agarose gel. The gel
was stained with ethidium bromide 1 lg/mL in TAE
buffer, transilluminated by UV light, and fluorescence
emission visualized using a CCD camera coupled to a Bio-
Rad Gel Doc XR apparatus.