2608 Journal of Medicinal Chemistry, 2007, Vol. 50, No. 11
Letters
(6) Rachid, Z.; Brahimi, F.; Katsoulas, A.; Teo, N.; Jean-Claude, B. J.
The combi-targeting concept: chemical dissection of the dual
targeting propereties of a series of combi-triazenes. J. Med. Chem.
2003, 46, 4313-4321.
(7) Rewcastle, G. W.; Murray, D. K.; Elliott, W. L.; Fry, D. W.; Howard,
C. T.; Nelson, J. M.; Roberts, B. J.; Vincent, P. W.; Showalter, H.
D.; Winters, T. R.; Denny, W. A. Structure-activity relationships
for methyl-amino-substituted derivatives of 4-[(3-bromophenyl)-
amino]-6-(methylamino)-pyrido[3,4-d]pyrimidine (PD 158780), a
potent and specific inhibitor of the tyrosine kinase activity of receptors
for the EGF family of growth factors. J. Med. Chem. 1998, 41, 742-
751.
(8) Rewcastle, G. W.; Denny, W. A.; Bridges, A. J.; Hairong, Z.; Cody,
D. R.; McMichael, A.; Fry, D. W. Tyrosine kinase inhibitor. Synthesis
and structure-activity relationships for 4-[(phenylmethyl)amino]- and
4-(phenylamino)quinazolines as potent adenosine 5′-triphosphate
binding site inhibitors of the tyrosine kinase domain of the epidermal
growth factor receptor. J. Med. Chem. 1995, 38, 3482-3487.
(9) Rewcastle, G. W.; Bridges, A. J.; Fry, D. W.; Rubin, J. R.; Denny,
W. A. Tyrosine kinase inhibitors. Synthesis and structure-activity
relationships for 6-substituted 4-(phenylamino)pyrimidino[5,4-d]-
pyrimidines designed as inhibitors of the epidermal growth factor
receptor. J. Med. Chem. 1997, 40, 1820-1826.
(10) Roth, G. A.; Tai, J. J. A new synthesis of aryl substituted quinazolin-
4(1H)-ones. J. Heterocycl. Chem. 1996, 33, 2051-2053.
(11) MOE software (version 2006.07) available from Chemical Computing
Group Inc., 1010 Sherbrooke Street West, Montreal, Quebec, Canada;
(12) Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C. Structure of the
epidermal growth factor receptor kinase domain alone and in complex
with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002, 277,
46265-46272.
(13) Brahimi, F.; Rachid, Z.; McNamee, J. P.; Alaoui-jamali, M. A.; Tari,
A. M.; Jean-Claude, B. J. Mechanism of action of a novel “combi-
triazene” engineered to possess a polar functional group on the
alkylating moiety: evidence for enhancement of potency. Biochem.
Pharmacol. 2005, 70 (4), 511-519.
(14) Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; Mc Mahon, J.;
Vistica, D. New colorimetric cytotoxicity assay for anticancer-drug
screening. J. Natl. Cancer Inst. 1990, 82, 1107-1112.
(15) Spanswick, V. J.; Hartley, J. M.; Ward, T. H.; Hartley, J. A.
Measurement of Drug-Induced DNA Interstrand Crosslinking Using
the Single Cell Gel Electrophoresis (Comet) Assay. In Cytotoxic Drug
Resistance Mechanisms; Brown, R., Boger-Brown, U., Eds.; Methods
in Molecular Medicine, Vol. 28; Humana Press: Totowa, NJ, 1999;
pp 143-154.
moiety when linked to the quinazoline ring. Using the 1,2,3-
triazene as a carrier of the bulky mustard has allowed us to
overcome steric hindrance of the chloroethyaminoethyl group.
However, the most critical elements for the enhanced potency
of the combi-molecules remain the mustard nitrogen that, as
suggested by molecular modeling, may interact with the ATP
site through a protonated nitrogen and its chloroethyl function
that confers the ability to induce DNA cross-links, irreversible
EGFR inhibition, and cell cycle arrest in mid-S. Thus, this study
has permitted the development of a unique molecule with
multiple antiproliferative mechanisms. A study describing its
synergistic mechanism of action (i.e., down-regulation of the
DNA repair protein ERCC1 through EGFR inhibitory function
and delayed DNA repair) will be reported elsewhere.
Acknowledgment. We thank the Canadian Institute of
Health (Grant FRN49440) for financial support. We are also
grateful to the National Cancer Institute.
Supporting Information Available: Experimental section,
NMR, mass, and elemental analysis data, and details of the
modeling programs. This material is available free of charge via
References
(1) Matheson, S. L.; McNamee, J.; Jean-Claude, B. J. Design of a
chimeric 3-methyl-1,2,3-triazene with mixed receptor tyrosine kinase
and DNA damaging properties: a novel tumour targeting strategy.
J. Pharmacol. Exp. Ther. 2001, 296, 832-840.
(2) Ma, J.; Murphy, M.; O’Dwyer, P. J.; Berman, E.; Reed, K.; Gallo,
J. M. Biochemical changes associated with a multidrug-resistant
phenotype of a human glioma cell line with temozolomide-acquired
resistance. Biochem. Pharmacol. 2002, 63, 1219-1228.
(3) Pepponi, R.; Griaziani, G.; Falcinelli, S.; Vernole, P.; Levati, L.;
Lacal, P. M.; Pagani, E.; Bonmassar, E.; Jiricny, J.; D’Arti, S. hMSH3
overexpression and cellular response to cytotoxic anticancer agents.
Carcinogenesis 2001, 22, 1131-1137.
(4) Yin, J. H.; Yang, D. I.; Chou, H.; Thompson, E. M.; Xu, J.; Hsu, C.
Y. Inducible nitric oxide synthase neutralizes carbamoylating potential
of 1,3-bis(2-chloroethyl)-1-nitrosourea in C6 glioma cells. J. Phar-
macol. Exp. Ther. 2001, 297, 308-315.
(5) Rachid, Z.; Brahimi, F.; Domarkas, J.; Jean-Claude, B. J. Synthesis
of half-mustard combi-molecules with fluorescence properties: cor-
relation with EGFR status. Bioorg. Med. Chem. Lett. 2005, 15, 1135-
1138.
JM070144P