Organic Letters
Letter
2006, 18, 1313−1316. (b) Michelet, B.; Deldaele, C.; Kajouj, S.;
Moucheron, C.; Evano, G. Org. Lett. 2017, 19, 3576−3579.
(c) Deldaele, C.; Michelet, B.; Baguia, H.; Kajouj, S.; Romero, E.;
Moucheron, C.; Evano, G. Chimia 2018, 72, 621−629.
(14) (a) Eberson, L. Electron-Transfer Reactions in Organic Chemistry,
the third chapter; Springer-Verlag: New York, 1987. (b) Cheng, J.-P.;
Lu, Y.; Zhu, X.; Mu, L. J. Org. Chem. 1998, 63, 6108−6114. (c) Yang,
C.; Liu, Y.; Yang, J.-D.; Li, Y.-H.; Li, X.; Cheng, J.-P. Org. Lett. 2016,
18, 1036−1039.
(15) Zhang, Y.; Schulz, M.; Wächtler, M.; Karnahl, M.; Dietzek, B.
Coord. Chem. Rev. 2018, 356, 127−146.
(16) (a) Ruthkosky, M.; Castellano, F. N.; Meyer, G. J. Inorg. Chem.
1996, 35, 6406−6412. (b) Baralle, A.; Fensterbank, L.; Goddard, J.-
P.; Ollivier, C. Chem. - Eur. J. 2013, 19, 10809−10813.
(17) The para-OMe in 3z probably rendered the HAT-derived
carbon radical being oxidized to the corresponding carbocation, from
which other products were formed. 3ai and 3aj failed to be converted
probably because of the same reason.
(18) (a) Federlin, P.; Kern, J.-M.; Rastegar, A.; Dietrich-Buchecker,
C.; Marnot, P. A.; Sauvage, J.-P. New J. Chem. 1990, 14, 9−12.
(b) Armaroli, N. Chem. Soc. Rev. 2001, 30, 113−124.
ACKNOWLEDGMENTS
■
The authors thank the National Natural Science Foundation of
China (No. 21772077) and State Key Laboratory of Applied
Organic Chemistry for financial support.
REFERENCES
■
(1) Davies, J.; Morcillo, S. P.; Douglas, J. J.; Leonori, D. Chem. - Eur.
J. 2018, 24, 12154−12163.
(2) (a) Fallis, A. G.; Brinza, I. M. Tetrahedron 1997, 53, 17543−
17594. (b) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603−1618.
(c) Kitamura, M.; Narasaka, K. Bull. Chem. Soc. Jpn. 2008, 81, 539−
547. (d) Chen, C.; Zhao, J.; Shi, X.; Liu, L.; Zhu, Y.-P.; Sun, W.; Zhu,
B. Org. Chem. Front. 2020, 7, 1948−1969.
(3) (a) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis
2018, 50, 1569−1586. (b) Kumar, G.; Pradhan, S.; Chatterjee, I.
Chem. - Asian J. 2020, 15, 651−672.
(4) (a) Yin, W.; Wang, X. New J. Chem. 2019, 43, 3254−3264.
(b) Xiao, F.; Guo, Y.; Zeng, Y.-F. Adv. Synth. Catal. 2021, 363, 120−
143.
(5) (a) Song, C.; Shen, X.; Yu, F.; He, Y.; Yu, S. Youji Huaxue 2020,
40, 3748−3759. (b) Yu, X.-Y.; Zhao, Q.-Q.; Chen, J.; Xiao, W.-J.;
Chen, J.-R. Acc. Chem. Res. 2020, 53, 1066−1083. (c) Wang, P.; Zhao,
Q.; Xiao, W.; Chen, J. Green Synth. Catal. 2020, 1, 42−51.
(6) (a) Majetich, G.; Wheless, K. Tetrahedron 1995, 51, 7095−7129.
(b) Chiba, S.; Chen, H. Org. Biomol. Chem. 2014, 12, 4051−4060.
(c) Chu, J. C. K.; Rovis, T. Angew. Chem., Int. Ed. 2018, 57, 62−101.
(d) Chen, H.; Yu, S. Org. Biomol. Chem. 2020, 18, 4519−4532.
(e) Goswami, N.; Maiti, D. Isr. J. Chem. 2020, 60, 303−312.
(7) (a) Shu, W.; Nevado, C. Angew. Chem., Int. Ed. 2017, 56, 1881−
1884. (b) Zhang, Y.; Yin, Z.; Wu, X.-F. Adv. Synth. Catal. 2019, 361,
3223−3227.
(8) (a) Li, J.; Zhang, P.; Jiang, M.; Yang, H.; Zhao, Y.; Fu, H. Org.
Lett. 2017, 19, 1994−1997. (b) Li, Y.; Mao, R.; Wu, J. Org. Lett. 2017,
19, 4472−4475. (c) Kumar, Y.; Jaiswal, Y.; Kumar, A. Org. Lett. 2018,
20, 4964−4969. (d) Du, F.; Li, S.-J.; Jiang, K.; Zeng, R.; Pan, X.-C.;
Lan, Y.; Chen, Y.-C.; Wei, Y. Angew. Chem., Int. Ed. 2020, 59, 23755−
23762. (e) Chen, A. D.; Herbort, J. H.; Wappes, E. A.; Nakafuku, K.
M.; Mustafa, D. N.; Nagib, D. A. Chem. Sci. 2020, 11, 2479−2486.
(f) Liang, W.; Jiang, K.; Du, F.; Yang, J.; Shuai, L.; Ouyang, Q.; Chen,
Y.-C.; Wei, Y. Angew. Chem., Int. Ed. 2020, 59, 19222−19228.
(9) (a) Wappes, E. A.; Nakafuku, K. M.; Nagib, D. A. J. Am. Chem.
Soc. 2017, 139, 10204−10207. (b) Zhao, R.; Fu, K.; Fang, Y.; Zhou,
J.; Shi, L. Angew. Chem., Int. Ed. 2020, 59, 20682−20690.
(10) (a) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.;
Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744−748. (b) Jiang, H.;
Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692−1696. (c) Shen, X.;
Zhao, J.-J.; Yu, S. Org. Lett. 2018, 20, 5523−5527. (d) Gu, Y.-R.;
Duan, X.-H.; Chen, L.; Ma, Z.-Y.; Gao, P.; Guo, L.-N. Org. Lett. 2019,
21, 917−920. (e) Chen, L.; Guo, L.-N.; Ma, Z.-Y.; Gu, Y.-R.; Zhang,
J.; Duan, X.-H. J. Org. Chem. 2019, 84, 6475−6482. (f) Torres-Ochoa,
R. O.; Leclair, A.; Wang, Q.; Zhu, J. Chem. - Eur. J. 2019, 25, 9477−
9484. (g) Li, Z.; Torres-Ochoa, R. O.; Wang, Q.; Zhu, J. Nat.
Commun. 2020, 11, 403−409.
(11) For examples of acyloxy transfer via ring opening of cyclic acyl
oximes and intramolecular cyclization, see: (a) Ai, W.; Liu, Y.; Wang,
Q.; Lu, Z.; Liu, Q. Org. Lett. 2018, 20, 409−412. (b) Zhao, B.; Chen,
C.; Lv, J.; Li, Z.; Yuan, Y.; Shi, Z. Org. Chem. Front. 2018, 5, 2719−
2722.
(12) (a) Larsen, C. B.; Wenger, O. S. Chem. - Eur. J. 2018, 24,
2039−2058. (b) Hockin, B. M.; Li, C.; Robertson, N.; Zysman-
Colman, E. Catal. Sci. Technol. 2019, 9, 889−915. (c) Hossain, A.;
Bhattacharyya, A.; Reiser, O. Science 2019, 364, No. eaav9713.
(d) Nicholls, T. P.; Bissember, A. C. Tetrahedron Lett. 2019, 60,
150883. (e) Zhong, M.; Pannecoucke, X.; Jubault, P.; Poisson, T.
Beilstein J. Org. Chem. 2020, 16, 451−481. (f) Sandoval-Pauker, C.;
Molina-Aguirre, G.; Pinter, B. Polyhedron 2021, 199, 115105.
(13) (a) Armaroli, N.; Accorsi, G.; Holler, M.; Moudam, O.;
Nierengarten, J.-F.; Zhou, Z.; Wegh, R. T.; Welter, R. Adv. Mater.
6061
Org. Lett. 2021, 23, 6057−6061