Ligand (S)-1b cleanly reacts with Ti(O-i-Pr)4 in dry CHCl3
yielding the complex (S)-2b (Scheme 1). The 1H NMR spectrum in
CDCl3 shows the quantitative formation of a single mononuclear
Ti(IV) complex. Due to the loss of C3 symmetry of the system,
We acknowledge with thanks the sponsorship of this project
by MIUR, FIRB-2003 CAMERE-RBNE03JCR5 project, the
University of Padova, CP0A054893 and Assegni di ricerca di
Ateneo 2006 (M.M. and M.P. fellowships), Givaudan S.A., Vernier
(T.S. fellowship) and the Swiss State Secretariat for Education
and Research (E.P.K, SER C02.0029/COSTD24). The project was
carried out in the framework of COST, Action D24 ‘Sustainable
Chemical Processes: Stereoselective Transition Metal-Catalysed
Reactions’ (WG D24/0005/2001).
1
the H NMR spectrum of complex (S)-2b is more complicated
then that of 2a, but it shows a single set of resonances for each of
the diastereotopic benzylic protons. VT NMR experiments from
−40 up to 60 ◦C gave no indication of another diastereomeric
species. This confirms that the presence of a remote stereogenic
centre is sufficient to control the helicity of the complex also for
the titanatrane 2b.13
The circular dichroism spectrum of the Ti(IV) complex (S)-2b
shows significantly enhanced signals compared with the spectrum
of the free ligand ((S)-1b) (Fig. 2).
Notes and references
1 V. Ugrinova, G. A. Ellis and S. N. Brown, Chem. Commun., 2004,
468–469.
2 Y. Kim and J. G. Verkade, Organometallics, 2002, 21, 2395–2399; S. D.
Bull, M. G. Davidson, A. L. Johnson, D. Robinson and M. F. Mahon,
Chem. Commun., 2003, 1750–1751; K. C. Fortner, J. P. Bigi and S. N.
Brown, Inorg. Chem., 2005, 44, 2803–2814; S. A. Cortes, M. A. Mun˜oz
Herna´ndez, H. Nakai, I. Castro-Rodriguez, K. Meyer, A. R. Fout,
D. L. Miller, J. C. Huffman and D. J. Mindiola, Inorg. Chem. Commun.,
2005, 8, 903–907.
3 M. Kol, M. Shamis, I. Goldberg, Z. Goldschmidt, S. Alfi and E. Hayut-
Salant, Inorg. Chem. Commun., 2001, 4, 177–179.
4 M. Mba, L. J. Prins and G. Licini, Org. Lett., 2007, 9, 21–24.
5 R. J. Motekaitis, A. E. Martell, S. A. Koch, J. W. Hwang, D. A. Quarless
and M. J. Welch, Inorg. Chem., 1998, 37, 5902–5911; N. V. Timosheva,
A. Chandrasekaran, R. O. Day and R. R. Holmes, Organometallics,
2001, 20, 2331–2337; Y. J. Kim, P. N. Kapoor and J. G. Verkade, Inorg.
Chem., 2002, 41, 4834–4838; S. Groysman, S. Segal, I. Goldberg, M.
Kol and Z. Goldschmidt, Inorg. Chem. Commun., 2004, 7, 938–941;
S. Groysman, I. Goldberg, M. Kol, E. Genizi and Z. Goldschmidt,
Adv. Synth. Catal., 2005, 347, 409–415; S. Groysman, I. Goldberg,
Z. Goldschmidt and M. Kol, Inorg. Chem., 2005, 44, 5073–5080;
C. Redshaw, M. A. Rowan, D. M. Homden, S. H. Dale, M. R. J.
Elsegood, S. Matsui and S. Matsuura, S., Chem. Commun., 2006,
3329–3331.
6 L. J. Prins, M. Mba, A. Kolarovic´ and G. Licini, Tetrahedron Lett.,
2006, 47, 2735–2738.
7 Crystal data for 3: {O[(TiN(C13H10O)3]2}(C6H6)2(CHCl3)0.79, M =
1483.4, monoclinic, space group P21/n, a = 13.2828(8), b = 15.6644(7),
◦
3
˚
˚
c = 18.5844(12) A, b = 105.269(7) , V = 3730.3(4) A , Z = 2, T =
Fig. 2 Circular dichroism spectra (CH2Cl2) for ligand (S)-1b and complex
(S)-2b.
200 K, l = 0.36 mm−1, Dc = 1.32 g cm−3, k(MoKa) = 0.71073 A,
˚
27925 measured reflections, 7259 unique (Rint = 0.084) from which
3203 with |Fo| >4r (Fo). The structure was solved by direct methods
(SIR-97) and refined by full matrix least-squares (XTAL 3.2) on F. R =
0.044, wR = 0.042, GOF = 1.33(2). CCDC reference number 629066.
For crystallographic data in CIF or other electronic format see DOI:
10.1039/b702958f.
This is consistent with the presence of a propeller-like confor-
mation for the mononuclear complex (S)-2b. Based on literature
precedent and on molecular model studies,11 the preferred di-
astereoisomer is expected to have the methyl group positioned
anti with respect to the phenyl moiety. On the basis of the
configurations present in the two heteronuclear moieties of the
l-oxo complex 3 this should generate a D (right-handed) propeller-
like twist.
Complex (S)-2b turned out to be stable towards reaction with
water. We were unable to detect a l-oxo complex even after the
addition of water (10 equiv.) and heating to 60 ◦C. Extensive
heating resulted in partial decomposition. ESI-MS experiments
(1 lM, acetonitrile, HCOOH 0.1% as mobile phase) did not show
the presence of any l-oxo species in solution, even after long
reaction times. The behaviour of the enantiopure complex (S)-
2b confirms that the formation of the l-oxo dimer 3 is driven by
a chiral self-discrimination process of two enantiomeric moieties.
This completely selective stereo-self-discrimination between enan-
tiomeric propeller shaped units could have interesting applications
in supramolecular chemistry14,15 or in asymmetric catalysis with
amplification of chirality.16
8 M. M. Olmstead, P. P. Power and M. Viggiano, J. Am. Chem. Soc.,
1983, 105, 2927–2928; N. Kuhn, T. Kratz, D. Blaser and R. Boese,
Inorg. Chim. Acta, 1995, 238, 179–181; A. Kayal, A. F. Ducruet and
S. N Lee, Inorg. Chem., 2000, 39, 3696–3704; T. C. H. Lam, E. Y. Y.
Chan, W.-L. Mak, S. M. L. Lo, I. D. Williams, W.-T. Wong and W.-H.
Leung, Inorg. Chem., 2003, 42, 1842–1847.
9 M. L. N. Rao, H. Houjou and K. Hiratani, Chem. Commun., 2002,
420–421; W. Levason, M. C. Popham, G. Reid and M. Webster, Dalton
Trans., 2003, 291–294; E. F. DiMauro, A. Mamai and M. C. Kozlowski,
Organometallics, 2003, 22, 850–855.
10 M. Nishio, M. Hirota and Y. Umezawa, The CH/p interaction, Wiley-
VCH, New York, 1998.
11 J. W. Canary, C. S. Allen, J. M. Castagnetto and Y. J. Wang, Y., J. Am.
Chem. Soc., 1995, 117, 8484–8485; Z. Dai, X. Zhu and J. W. Canary,
Chirality, 2005, 17, 227–235.
12 G. Bernardinelli, D. Fernandez, R. Gosmini, P. Meier, P., A. Ripa, P.
Schu¨pfer, B. Treptow and E. P. Ku¨ndig, Chirality, 2000, 12, 529–539;
E. P. Ku¨ndig, C. Botuha, G. Lemercier, P. Romanens, L. Saudan and
S. Thibault, Helv. Chim. Acta, 2004, 87, 561–579.
13 During the preparation of this manuscript, an analogous enantiopure
triphenolamine bearing ortho and para t-Bu groups has been published.
A similar synthetic sequence was used. In analogy with what we
observe with ligand 1b the corresponding Ti(IV) complex forms a single
diastereomeric species, both in solution and in the crystal structure. P.
This journal is
The Royal Society of Chemistry 2007
Dalton Trans., 2007, 1573–1576 | 1575
©