ꢁꢀꢀꢀ
J.-W. Yuan et al.: Direct amination of benzoxazoles with tertiary aminesꢃ
ꢃ325
13
[9] D. Monguchi, T. Fujiwara, H. Furukawa, A. Mori, Org. Lett. 2009,
11, 1607.
[10] Q. Wang, S. L. Schreiber, Org. Lett. 2009, 11, 5178.
[11] N. Matsuda, K. Hirano, T. Satoh, M. Miura, Org. Lett. 2011, 13,
2860.
[12] D. Charles, P. Schultz, S. L. Buchwald, Org. Lett. 2005, 7, 3965.
[13] Y. M. Li, J. Liu, Y. S. Xie, R. Zhang, K. Jin, X. N. Wang, C. Y. Duan,
Org. Biomol. Chem. 2012, 10, 3715.
[14] N. Matsuda, K. Hirano, T. Satoh, M. Miura, Synthesis 2012, 12,
1792.
[15] S. M. Guo, B. Qian, Y. J. Xie, C. G. Xia, H. M. Huang, Org. Lett.
2011, 13, 522.
[16] S. Mitsuda, T. Fujiwara, K. Kimigafukuro, D. Monguchi, A. Mori,
Tetrahedron 2012, 68, 3585.
[17] K. Cao, J. L. Wang, L. H. Wang, Y. Y. Li, X. H. Yu, Y. W. Huang,
J. X. Yang, G. J. Chang, Synth. Commun. 2014, 44, 2848.
[18] J. Gu, C. Cai, Synlett, 2015, 26, 639.
[19] S. Yotphan, D. Danupat, V. Reutrakul, Tetrahedron, 2013, 69,
6627.
Hz, 1H), 4.74 (s, 2H), 3.12 (s, 3H). – C NMR (100.61 MHz,
CDCl3): δ ꢀ=ꢀ 163.7, 147.6, 144.9, 136.1, 129.3, 128.8 (CH), 127.8
(CH), 127.6 (CH), 120.1 (CH), 116.2 (CH), 109.1 (CH), 53.8
(CH2), 35.2 (CH3). – MS ((+)-ESI): m/z ꢀ=ꢀ 273.3 (calcd. 273.1
+
for C15H14ClN2O, [M+H] ).
4.2.23 N-benzyl-N-methyl-5-nitrobenzo[d]oxazol-
2-amine (5e)
Colorless solid. – 1H NMR (400.13 MHz, CDCl3): δ ꢀ=ꢀ 8.19 (d,
J ꢀ=ꢀ 2.2 Hz, 1H), 8.00 (dd, J ꢀ=ꢀ 8.7 Hz, J ꢀ=ꢀ 2.2 Hz, 1H), 7.39–
7.26 (m, 6H), 4.78 (s, 2H), 3.17 (s, 3H). – C NMR (100.61
13
MHz, CDCl3): δ ꢀ=ꢀ 164.5, 152.9, 145.2, 144.5, 135.6, 128.9 (CH),
128.1 (CH), 127.7 (CH), 116.9 (CH), 111.6 (CH), 108.3 (CH),
54.0 (CH2), 35.2 (CH3). – HRMS ((+)-ESI): m/z ꢀ=ꢀ 284.1032
+
[20] Y. M. Li, Y. S. Xie, R. Zhang, K. Jin, X. N. Wang, C. Y. Duan, J. Org.
Chem. 2011, 76, 5444.
(calcd. 284.1030 for C15H14N3O3, [M+H] ).
[21] J. Wang, J. T. Hou, J. Wen, J. Zhang, X. Q. Yu, Chem. Commun.
2011, 47, 3652.
[22] D. Q. Xu, W. F. Wang, C. X. Miao, Q. H. Zhang, C. G. Xia, W. Sun,
Green Chem. 2013, 15, 2975.
5 Supporting information
1H NMR and 13C NMR spectra of 3a–3e, 4a–4m, and 5a–5e
are given as supporting information available online
(DOI: 10.1515/znb-2015-0212).
[23] S. H. Cho, J. Y. Kim, S. Y. Lee, S. Chang, Angew. Chem. Int. Ed.
2009, 48, 9127.
[24] J. Y. Kim, S. H. Cho, J. Joseph, S. Chang, Angew. Chem. Int. Ed.
2010, 49, 9899.
[25] S. Wertz, S. Kodama, A. Studer, Angew. Chem. Int. Ed. 2011, 50,
11511.
Acknowledgments: This work was supported by the
National Natural Science Foundation of China (Nos.
21172055 and 21302042), Natural Science foundation of
Henan Scientific Committee (No. 142102210410), Natural
Science Foundation of Henan Educational Committee
(No. 14B150053), the Program for Innovative Research
Team from Zhengzhou (No. 131PCXTD605), and Scien-
tific Fund Project of Zhengzhou Science and Technology
Bureau (No. 20130883).
[26] Y. S. Wagh, N. J. Tiwari, B. M. Bhanage, Tetrahedron Lett. 2013,
54, 1290.
[27] X. Wang, D. Q. Xu, C. X. Miao, Q. H. Zhang, W. Sun, Org. Biomol.
Chem. 2014, 12, 3108.
[28] M. Lamani, K. R. Prabhu, J. Org. Chem. 2011, 76, 7938.
[29] T. Froehr, C. P. Sindlinger, U. Kloeckner, P. Finkbeiner,
B. J. Nachtsheim, Org. Lett. 2011, 13, 3754.
[30] R. Wang, H. Liu, L. Yue, X. K. Zhang, Q. Y. Tan, R. L. Pan, Tetrahe-
dron Lett. 2014, 55, 2233.
[31] Y. S. Wagh, D. N. Sawant, B. M. Bhanage, Tetrahedron Lett.
2012, 53, 3482.
[32] S. Yotphan, D. Beukeaw, V. Reutrakul, Synthesis, 2013, 45, 936.
[33] W. P. Mai, G. Song, J. W. Yuan, L. R. Yang, G. C. Sun, Y. M. Xiao,
P. Mao, L. B. Qu, RSC Adv. 2013, 3, 3869.
[34] W. P. Mai, H. H. Wang, Z. C. Li, J. W. Yuan, Y. M. Xiao, L. R. Yang,
P. Mao, L. B. Qu, Chem. Commun. 2012, 48, 10117.
[35] Y. M. Li, L. N. Ma, F. Jia, Z. P. Li, J. Org. Chem. 2013, 78, 5638.
[36] Y. M. Li, F. Jia, Z. P. Li, Chem. Eur. J. 2013, 19, 82.
[37] S. Wang, J. Wang, R. Guo, S. Y. Chen, X. Q. Yu, Tetrahedron Lett.
2013, 54, 6233.
References
[1] Y. Ikeda, H. Nonaka, T. Furumai, H. Onaka, Y. Igarashi, J. Nat.
Prod. 2005, 68, 1061.
[2] Z. Jin, Nat. Prod. Rep. 2009, 26, 382.
[3] R. E. Martin, L. G. Green, W. Guba, N. Kratochwil, A. Christ,
J. Med. Chem. 2007, 50, 6291.
[4] K. G. Liu, J. R. Lo, T. A. Comery, G. M. Zhang, J. Y. Zhang,
D. M. Kowal, D. L. Smith, L. Di, E. H. Kerns, L. E. Schechter,
A. J. Robichaud, Bioorg. Med. Chem. Lett. 2009, 19, 1115.
[5] D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624.
[6] R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin,
Chem. Eur. J. 2010, 16, 2654.
[7] A. Armstrong, J. C. Collins, Angew. Chem. Int. Ed. 2010, 49, 2282.
[8] T. Kawano, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc.
2010, 132, 6900.
[38] K. Matsumoto, M. Toda, S. Hashimoto, Chem. Lett. 1991, 8, 1283.
[39] Y. J. Xie, B. Qian, P. Xie, H. M. Huang, Adv. Synth. Catal. 2013,
335, 1315.
[40] M. Yamato, Y. Takeuchi, K. Hattori, K. Hashigaki, Chem. Pharm.
Bull. 1984, 32, 3053.
Supplemental Material: The online version of this article
(DOI: 10.1515/znb-2015-0212) offers supplementary material,
available to authorized users.
Unauthenticated
Download Date | 3/31/16 5:57 PM