Published on Web 04/19/2007
Mechanistic Investigation of Intramolecular Aminoalkene and
Aminoalkyne Hydroamination/Cyclization Catalyzed by Highly
Electrophilic, Tetravalent Constrained Geometry 4d and 5f
Complexes. Evidence for an M-N σ-Bonded Insertive Pathway
Bryan D. Stubbert and Tobin J. Marks*
Contribution from the Department of Chemistry, Northwestern UniVersity,
EVanston, Illinois 60208-3113
Received October 24, 2006; E-mail: t-marks@northwestern.edu
Abstract: A mechanistic study of intramolecular hydroamination/cyclization catalyzed by tetravalent
organoactinide and organozirconium complexes is presented. A series of selectively substituted constrained
geometry complexes, (CGC)M(NR2)Cl (CGC ) [Me2Si(η5-Me4C5)(tBuN)]2-; M ) Th, 1-Cl; U, 2-Cl; R )
SiMe3; M ) Zr, R ) Me, 3-Cl) and (CGC)An(NMe2)OAr (An ) Th, 1-OAr; An ) U, 2-OAr), has been
prepared via in situ protodeamination (complexes 1-2) or salt metathesis (3-Cl) in high purity and excellent
yield and is found to be active precatalysts for intramolecular primary and secondary aminoalkyne and
aminoalkene hydroamination/cyclization. Substrate reactivity trends, rate laws, and activation parameters
for cyclizations mediated by these complexes are virtually identical to those of more conventional (CGC)-
MR2 (M ) Th, R ) NMe2, 1; M ) U, R ) NMe2, 2; M ) Zr, R ) Me, 3), (Me2SiCp′′2)UBn2 (Cp′′ ) η5-Me4C5;
Bn ) CH2Ph, 4), Cp′2AnR2 (Cp′ ) η5-Me5C5; R ) CH2SiMe3; An ) Th, 5, U, 6), and analogous
organolanthanide complexes. Deuterium KIEs measured at 25 °C in C6D6 for aminoalkene D2NCH2C(CH3)2-
CH2CHCH2 (11-d2) with precatalysts 2 and 2-Cl indicate that kH/kD ) 3.3(5) and 2.6(4), respectively.
Together, the data provide strong evidence in these systems for turnover-limiting CsC insertion into an
MsN(H)R σ-bond in the transition state. Related complexes (Me2SiCp′′2)U(Bn)(Cl) (4-Cl) and Cp′2An(R)-
(Cl) (R ) CH2(SiMe3); An ) Th, 5-Cl; An ) U, 6-Cl) are also found to be effective precatalysts for this
transformation. Additional arguments supporting MsN(H)R intermediates vs MdNR intermediates are
presented.
diastereoselectivities (>95%)1d and with enantioselectivities as
Introduction
high as 95%.4b Mechanistic experiments with rigorously trivalent
Hydroamination (HA), the atom-economical addition of an
NsH bond across a CsC unsaturation,1 is an important
synthetic methodology for regiospecific CsN bond formation,
a topic of considerable academic and industrial interest.2
Research on this transformation pervades the Periodic Table,1
with extensively studied organolanthanide-catalyzed intramo-
lecular HA/cyclization playing a prominent role,3,4 typically
displaying near-quantitative yields in addition to high regio- and
lanthanide (Ln) catalysts on intramolecular aminoalkene,3v,w
(3) (a) Motta, A.; Lanza, G.; Fragala, I. L.; Marks, T. J. Organometallics 2004,
23, 4097-4104. (b) Seyam, A. M.; Stubbert, B. D.; Jensen, T. R.;
O’Donnell, J. J., III; Stern, C. L.; Marks, T. J. Inorg. Chim. Acta 2004,
357, 4029-4035. (c) Ryu, J.-S.; Marks, T. J.; McDonald, F. E. J. Org.
Chem. 2004, 69, 1038-1052. (d) Hong, S.; Kawaoka, A. M.; Marks, T. J.
J. Am. Chem. Soc. 2003, 125, 15878-15892. (e) Hong, S.; Tian, S.; Metz,
M. V.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 14768-14783. (f) Ryu,
J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 12584-12605.
(g) Hong, S.; Marks, T. J. J. Am. Chem. Soc. 2002, 124, 7886-7887. (h)
Ryu, J.-S.; Marks, T. J.; McDonald, F. E. Org. Lett. 2001, 3, 3091-3094.
(i) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. J. Am. Chem.
Soc. 1999, 121, 3633-3639. (j) Arredondo, V. M.; McDonald, F. E.; Marks,
T. J. Organometallics 1999, 18, 1949-1960. (k) Tian, S.; Arredondo, V.
M.; Stern, C. L.; Marks, T. J. Organometallics 1999, 18, 2568-2570. (l)
Arredondo, V. M.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1998,
120, 4871-4872. (m) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120,
1757-1771. (n) Roesky, P. W.; Stern, C. L.; Marks, T. J. Organometallics
1997, 16, 4705-4711. (o) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996,
118, 9295-9306. (p) Li, Y.; Marks, T. J. Organometallics 1996, 15, 3770-
3772. (q) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118, 707-708. (r)
Giardello, M. A.; Conticello, V. P.; Brard, L.; Gagne´, M. R.; Marks, T. J.
J. Am. Chem. Soc. 1994, 116, 10241-10254. (s) Giardello, M. A.;
Conticello, V. P.; Brard, L.; Sabat, M.; Rheingold, A. L.; Stern, C. L.;
Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10212-10240. (t) Li, Y.; Fu,
P.-F.; Marks, T. J. Organometallics 1994, 13, 439-440. (u) Gagne´, M.
R.; Brard, L.; Conticello, V. P.; Giardello, M. A.; Stern, C. L.; Marks, T.
J. J. Am. Chem. Soc. 1992, 11, 2003-2005. (v) Gagne´, M. R.; Stern, C.
L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275-94. (w) Gagne´, M. R.;
Marks, T. J. J. Am. Chem. Soc. 1989, 111, 4108-9. (x) Motta, A.; Lanza,
G.; Fragala, I. L.; Marks, T. J. Organometallics 2006, 25, 5533-5539.
(1) For general hydroamination reviews, see: (a) Odom, A. L. Dalton Trans.
2005, 225-233. (b) Hultzsch, K. C. AdV. Synth. Catal. 2005, 347, 367-
391. (c) Hultzsch, K. C.; Gribkov, D. V.; Hampel, F. J. Organomet. Chem.
2005, 690, 4441-4452. (d) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004,
37, 673-686. (e) Doye, S. Synlett 2004, 1653-1672. (f) Beller, M.; Tillack,
A.; Seayad, J. In Transition Metals for Organic Synthesis, 2nd ed.; Beller,
M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004; pp 91-141. (g) Roesky,
P. W.; Mueller, T. E. Angew. Chem., Int. Ed. 2003, 42, 2708-2710. (h)
Pohlki, F.; Doye, S. Chem. Soc. ReV. 2003, 32, 104-114. (i) Bytschkov,
I.; Doye, S. Eur. J. Org. Chem. 2003, 2003, 935-946. (j) Seayad, J.; Tillack,
A.; Hartung, C. G.; Beller, M. AdV. Synth. Catal. 2002, 344, 795-813. (k)
Togni, A. In Catalytic Heterofunctionalization; Togni, A., Gruetzmacher,
H., Eds.; Wiley-VCH: New York, 2001; pp 91-141. (l) Nobis, M.;
Drieâen-Holscher, B. Angew. Chem., Int. Ed. 2001, 40, 3983-3985. (m)
Eisen, M. S.; Straub, T.; Haskel, A. J. Alloys Compd. 1998, 271-273,
116-122. (n) Mueller, T. E.; Beller, M. Chem. ReV. 1998, 98, 675-703.
(2) For general C-N bond-formation references, see: (a) Beller, M.; Seayad,
J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368-3398. (b)
Hartwig, J. F. Science 2002, 297, 1653-1654. (c) Beller, M.; Riermeier,
T. H. Transition Met. Org. Synth. 1998, 1, 184-194. (d) Hegedus, L. S.
Angew. Chem., Int. Ed. Engl. 1988, 27, 1113-1126.
9
10.1021/ja0675898 CCC: $37.00 © 2007 American Chemical Society
J. AM. CHEM. SOC. 2007, 129, 6149-6167
6149