W. Leibl, M.-F. Charlot, A. Aukauloo et al.
oration and the crude product was purified by column chromatography
on neutral alumina (CH2Cl2/MeOH 90:10) to afford II(NO3)2 (353 mg,
[9] M.-F. Charlot, Y. Pellegrin, A. Quaranta, W. Leibl, A. Aukauloo,
Chem. Eur. J. 2006, 12, 796–812.
AHCTREUNG
72%) as an orange solid. The corresponding hexaflurophosphate salt was
isolated upon addition of a saturated aqueous solution of NaPF6 to a con-
[10] C. Daul, E. J. Baerends, P. Vernooijs, Inorg. Chem. 1994, 33, 3 53 8–
3543.
[11] J. K. McCusker, Acc. Chem. Res. 2003, 36, 876–887.
[12] C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whit-
ten, B. P. Sullivan, J. K. Nagle, J. Am. Chem. Soc. 1979, 101, 4815–
4824.
[13] M. Kirch, J.-M. Lehn, J. P. Sauvage, Helv. Chim. Acta 1979, 62,
1345–1384.
[14] N. Kitamura, H.-B. Kim, S. Sumio, S. Tazuke, J. Phys. Chem. 1989,
93, 5750–5756.
(NO3)2 in methanol. 1H NMR ([D6]DMSO,
centrated solution of IIACHTREUNG
360 MHz): d = 9.05 (d, 2H), 8.90, 8.85 (d, 4H), 8.27 (d, 2H), 8.22 (t,
2H), 8.10 (t, 2H), 7.89 (d, 2H), 7.81 (d, 2H), 7.73(dd, 2H), 7.59 (m,
4H), 7.39 (m, 3H), 1.38 ppm (s, 18H); IR: n˜ = 2951, 2902, 2863(CH),
1623(C =N), 1360 cmꢁ1 (N=O, NO3ꢁ); UV lmax (e)=240 (26500), 250 (sh,
22000), 287 (61500), 335 (23400), 430 (9500), 460 (10000), 520 nm (sh,
3000); ESI MS: m/z (%): 411.3(100) [ M]2+; elemental analysis calcd (%)
for C47H44N10O6Ru·2H2O (982.02): C 57.48, H 4.93, N 14.26; found: C
57.90, H 5.09, N 14.20.
[15] H.-B. Kim, N. Kitamura, Y. Kawanishi, S. Tazuke, J. Phys. Chem.
1989, 93, 5757–5764.
Complex III: IIACHTREUNG(NO3)2 (67 mg, 0.07 mmol) was dissolved in methanol
[16] F. Scandola, C. Choiorboli, M. T. Indelli, M. A. Rampi, Vol.
(Ed.: V. Balzani), Wiley-VCH, Weinheim, 2001, pp. 337–408.
[17] Y. Pellegrin, K. E. Berg, G. Blondin, E. AnxolabØhre-Mallart, W.
Leibl, A. Aukauloo, Eur. J. Inorg. Chem. 2003, 1900–1910.
[18] Y. Pellegrin, A. Quaranta, P. Dorlet, M.-F. Charlot, W. Leibl, A. Au-
kauloo, Chem. Eur. J. 2005, 11, 3698–3710.
[19] F. Lachaud, A. Quaranta, Y. Pellegrin, P. Dorlet, M.-F. Charlot, S.
Un, W. Leibl, A. Aukauloo, Angew. Chem. 2005, 117, 1560–1564;
Angew. Chem. Int. Ed. 2005, 44, 1536–1540.
[20] H. Xu, K.-C. Zheng, H. Deng, L.-J. Lin, Q.-L. Zhang, L.-N. Ji, New
J. Chem. 2003, 27, 1255–1263.
3
(3mL). To this solution was added 1 m nitric acid (80 mL). This solution
was stirred for an hour, and then concentrated under reduced pressure.
The hexafluorophosphate salt was isolated upon addition of a saturated
aqueous solution of NaPF6 to give an orange powder (78 mg, 85%).
1H NMR ([D6]DMSO, 360 MHz): d = 9.13(d, 2H), 8.90, 8.86 (d, 4H),
8.23(t, 2H), 8.18 (d, 2H), 8.13(t, 2H), 8.03(d, 2H), 7.9 (m, 4H), 7.6 (m,
5H), 7.37 (t, 2H), 1.43 ppm (s, 18H); IR: n˜ = 3104 (NH), 2952, 2900,
2864 (CH), 1624 cmꢁ1 (C=N phen); UV: lmax (e)=286 (67000), 430
(10000), 460 nm (11500); ESI MS: m/z (%): 411.2 (100) [M]2+; elemental
analysis calcd (%) for C47H45F18N8P3Ru·3H2O (1311.92): C 43.03, H 3.92,
N 8.54; found C 43.17, H 4.09, N 8.62.
[21] Y. Xiong, L.-N. Ji, Coord. Chem. Rev. 1999, 185–186, 711–733.
[22] L.-N. Ji, X.-H. Zou, J.-G. Liu, Coord. Chem. Rev. 2001, 216–217,
513–536.
[23] E. A. Steck, A. R. Day, J. Am. Chem. Soc. 1943, 65, 452–456.
[24] D. P. Rillema, D. S. Jones, C. Woods, H. A. Levy, Inorg. Chem. 1992,
31, 2935–2938.
[25] G. C. Pimentel, A. L. McClellan, The hydrogen bond, W. H. Free-
man, San Francisco, 1960, p. 260.
[26] M. C. Munoz, R. Ruiz, M. Traianidis, A. Aukauloo, J. Cano, Y. Jour-
naux, I. Fernandez, J. R. Pedro, Angew. Chem. 1998, 110, 1933–
1936; Angew. Chem. Int. Ed. 1998, 37, 1833–1836.
Complex I: IIACHTREUNG(NO3)2 (67 mg, 0.07 mmol) was dissolved in acetonitrile
(3mL). An excess of sodium methoxide was added to this solution. The
mixture was stirred for 2 h then filtered to remove undissolved material.
The filtrate evaporated to dryness. The solid was dissolved in a small
amount of methanol and precipitated with an excess of NaPF6 salt
(62 mg, 87%). 1H NMR ([D6]DMSO, 250 MHz): d = 8.97 (d, 2H), 8.90,
8.86 (d, 4H), 8.27 (d, 2H), 8.22 (t, 2H), 8.16 (t, 2H), 7.89 (d, 2H), 7.71
(m, 4H), 7.60 (m, 4H), 7.36 (m, 3H), 1.40 ppm (s, 18H); IR: n˜ = 2954,
2900, 2866 (CH), 1629 cmꢁ1 (C=N phen); UV: lmax (e)=240 (23500), 250
(sh, 18000), 290 (55000), 337 (26000), 425 (9000), 460 (8000), 520 (sh,
3000); ESI MS: m/z (%): 411.3(100) [ M]2+, 821.3(21) [ M]+; elemental
analysis calcd (%) for C47H43F6N8PRu·H2O·CH3OH (1015.99): C 56.74, H
4.86, N 11.03; found C 56.80, H 4.92, N 11.20.
[27] J.-Z. Wu, Y. Guang, S. Chen, L. N. Ji, J.-Y. Zhou, Y. Xu, Inorg.
Chim. Acta 1998, 283, 17–23.
[28] J. Abe, T. Sano, M. Kawano, Y. Ohashi, M. M. Matsushita, T. Iyoda,
Angew. Chem. 2001, 113, 600–602; Angew. Chem. Int. Ed. 2001, 40,
580–582.
[29] D. M. Roundhill, Photochemistry and photophysics of metal com-
plexes, Plenum Press, New York, 1994, pp. 165–215.
[30] The equation is obtained assuming that the entropy changes accom-
panying protonation are the same in the ground and in the excited
states.
Acknowledgements
This work was supported by the CNRS (ANR Blanc HYPHO) and the
European Commission (NEST STREP SOLAR-H contract No 516510).
We thank the Centre Informatique National de l’Enseignement SupØrieur
at Montpellier (France) and the Institut du DØveloppement et des Res-
ACHTREUNGsources en Informatique Scientifique at Orsay (France) for providing cal-
culation means. C.H. is grateful to the International Chair of Blaise
Pascal for a scholarship.
[31] R. J. Crutchley, N. Cress, A. B. P. Lever, J. Am. Chem. Soc. 1983,
105, 1170–1178.
[32] We noticed a loss of solubility associated to the increase of solvent
basicity. During the degassing procedure, especially at high pH, part
of the complex adheres on the cuvette walls. The amplitude of
signal might thus be affected due to a decreased bulk concentration
of the compound. Due to the long measurement times to record the
full spectrum, absorption change measurements are much more sus-
ceptible to be affected than measurements of emission spectra.
[33] R. H. Riem, A. McLachlan, G. R. Coraor, E. J. Urban, J. Org.
Chem. 1971, 36, 2272–2275.
[34] M. K. Nazeeruddin, Q. Wang, L. Cevey, V. Aranyos, P. Liska, E. Fig-
gemeier, C. Klein, N. Hirata, S. Koops, S. A. Haque, J. R. Durrant,
A. Hagfeldt, A. B. P. Lever, M. Grätzel, Inorg. Chem. 2006, 45, 787–
797.
[35] J. B. Foresman, Æ. Frisch in Exploring chemistry with electronic
structure methods, Gaussian, Inc., Pittsburg, PA, 1996, p. 237.
[36] J. E. Monat, J. H. Rodriguez, J. K. McCusker, J. Phys. Chem. A
2002, 106, 7399–7406.
[37] J. F. Guillemoles, V. Barone, L. Joubert, C. Adamo, J. Phys. Chem.
A 2002, 106, 11354–11360.
[1] V. Balzani, A. Juris, Coord. Chem. Rev. 2001, 211, 97–115.
[2] K. Kalyanasundaram, Coord. Chem. Rev. 1982, 46, 159–244.
[3] N. D. McClenaghan, Y. Leydet, B. Maubert, M. T. Indelli, S. Campa-
gna, Coord. Chem. Rev. 2005, 249, 1336–1350.
[4] V. Balzani, A. Credi, M. Venturi, Coord. Chem. Rev. 1998, 171, 2–
16.
[5] P. D. Beer, P. A. Gale, Angew. Chem. 2001, 113, 502–532; Angew.
Chem. Int. Ed. 2001, 40, 486–516.
[6] S. Welter, K. Brunner, J. W. Hofstraat, L. De Cola, Nature 2003, 421,
54–58.
[7] B. Schlicke, L. De Cola, P. Belser, V. Balzani, Coord. Chem. Rev.
2000, 208, 267–275.
[8] R. Passalacqua, F. Loiseau, S. Campagna, Y.-Q. Fang, G. S. Hanan,
Angew. Chem. 2003, 115, 1646–1649; Angew. Chem. Int. Ed. 2003,
42, 1608–1611.
[38] S. R. Stoyanov, J. M. Villegas, D. P. Rillema, Inorg. Chem. Commun.
2004, 7, 838–841.
8210
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2007, 13, 8201 – 8211