3498
M. Alajarı´n et al. / Tetrahedron Letters 48 (2007) 3495–3499
Broggini, G.; De Marchi, I.; Martinelli, M.; Paladino, G.;
Pilati, T.; Terraneo, A. Synthesis 2005, 2246–2252.
N
CHO
N
NH3
Cl
CH3CN
25 °C
N
N
6. (a) L’abbe, G. Chem. Rev. 1969, 69, 345–363; (b) L’abbe,
´
´
N
G.; Galle, J. E.; Hassner, A. Tetrahedron Lett. 1970, 303–
N
N
´
306; (c) L’abbe, G. Angew. Chem., Int. Ed. Engl. 1975, 14,
3c
6a
775–782.
7. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.;
Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–
2599; (b) Tornoe, C. W.; Christensen, C.; Meldal, M. J.
Org. Chem. 2002, 67, 3057–3064; (c) Bock, V. D.;
Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org. Chem.
2006, 51–68; (d) Lipshutz, B. H.; Taft, B. R. Angew.
Chem., Int. Ed. 2006, 45, 8235–8238.
BnNH2 or
p
-TolNH2
NaBH4
MeOH
Na2SO4
CH2Cl2, 25 °C
0
25 °C
NaBH4
MeOH
R
N
0
25 °C
N
N
8. (a) Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams,
I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem.
Soc. 2005, 127, 15998–15999; (b) Majireck, M. M.;
Weinreb, S. M. J. Org. Chem. 2006, 71, 8680–8683.
9. (a) Harvey, G. R. J. Org. Chem. 1966, 31, 1587–1590; (b)
N
5a-c
Scheme 3. Alternative route to that shown in Table 1 (entries 1–3) for
the synthesis of 5a–c by starting from triazole 3c.
´
Ykman, P.; Mathys, G.; L’abbe, G.; Smets, G. J. Org.
Chem. 1972, 37, 3213–3216.
10. Eguchi, S.; Goto, S. Heterocycl. Commun. 1994, 1, 51–54.
11. Ardakani, M. A.; Smalley, R. K.; Smith, R. H. J. Chem.
Soc., Perkin Trans. 1 1983, 2501–2506.
Acknowledgements
12. Smolinsky, G. J. Org. Chem. 1961, 26, 4108–4110.
13. Experimental procedure for the synthesis of 3b: A solution
of 1b (1.42 g; 8.50 mmol) and phosphorane 2 (2.00 g;
5.67 mmol) in toluene (50 mL) was stirred under reflux for
6 h. After removal of the solvent under reduced pressure,
the residue was purified by silica gel chromatography
eluting with 1:2 AcOEt/hexane (Rf = 0.23); yield 90%; mp
68–69 ꢁC (colorless prisms, Et2O); IR (Nujol) 1503, 1282,
´
We are grateful to the ‘Ministerio de Educacion y Cien-
cia’ (MEC) of Spain and FEDER funds (Project
CTQ2005-02323/BQU) as well as to the ‘Fundacion
Seneca-CARM’ (Project PI-1/00749/FS/01) for funding.
J.C. and A.P. are also grateful to the MEC for a fellow-
´
´
´
ship and for a contract in the frame of the ‘Ramon y
Cajal’ Program, respectively.
1
1268, 1232, 1113, 1103, 980, 840, 776, 725, 671 cmÀ1; H
NMR (CDCl3) d 4.37 (s, 2H), 4.51 (s, 2H), 7.45 (d, 1H,
J = 7.7 Hz), 7.56 (td, 1H, J = 7.6 Hz, J = 1.7 Hz), 7.60–
7.68 (m, 2H), 7.91 (s, 1H); 13C NMR (CDCl3) d 32.0 (t),
41.3 (t), 127.8 (d), 129.7 (d), 131.2 (d), 131.4 (d), 133.7 (s),
133.8 (d), 135.2 (s), 135.5 (s); MS (EI, 70 eV) m/z (rel int)
245 (M++4, 13), 243 (M++2, 21), 241 (M+, 29), 230 (32),
180 (34), 178 (100), 143 (63), 142 (60), 125 (59), 116 (28),
115 (34), 89 (56), 63 (25). Anal. Calcd for C10H9Cl2N3
(242.11): C, 49.61; H, 3.75; N, 17.36. Found: C, 49.84; H,
3.93; N, 17.36.
References and notes
1. (a) Sternbach, L. H. Angew. Chem., Int. Ed. Engl. 1971, 10,
34–43; (b) Lancel, M.; Steiger, A. Angew. Chem., Int. Ed.
1999, 111, 2852–2854.
2. (a) Sharp, J. T. In Comprehensive Heterocyclic Chemistry;
Katritzky, A. R., Rees, C. W., Eds.; Pergamon: Oxford,
1984; Vol. 7, pp 608–620; (b) Ellman, J. A. Acc. Chem.
´
Res. 1996, 29, 132–143; (c) Cepanec, I.; Litvic, M.;
Pogorelic, I. Org. Process Res. Dev. 2006, 10, 1192–1198.
14. Purvis, R.; Smalley, R. K.; Suschitzky, H.; Alkhader, M.
A. J. Chem. Soc., Perkin Trans. 1 1984, 249–254.
´
3. (a) Meguro, K.; Kuwada, Y. Tetrahedron Lett. 1970,
4039–4042; (b) Hester, J. B., Jr.; Duchamp, D. J.;
Chidester, C. G. Tetrahedron Lett. 1971, 1609–1612; (c)
Bock, M. G.; DiPardo, R. M.; Evans, B. E.; Rittle, K. E.;
Veber, D. F.; Freidinger, R. M.; Chang, R. S. L.; Lotti, V.
J. J. Med. Chem. 1988, 31, 176–181.
4. (a) Hester, J. B., Jr.; Rudzik, A. D.; Kamdar, B. V. J.
Med. Chem. 1971, 14, 1078–1081; (b) Schweitzer, P. K.;
Koshorek, G.; Muehlbach, M. J.; Morris, D. D.; Roehrs,
T.; Walsh, J. K.; Roth, T. Hum. Psychopharmacol. Clin.
Exp. 1991, 6, 99–107; (c) Levine, J.; Cole, D. P.; Roy
Chengappa, K. N.; Gershon, S. Depress. Anxiety 2001, 14,
94–104; (d) Snyder, P. J.; Werth, J.; Giordani, B.;
Caveney, A. F.; Feltner, D.; Maruff, P. Hum. Psycho-
pharmacol. Clin. Exp. 2005, 20, 263–273.
15. Experimental procedure for the synthesis of 5a: A slow
stream of ammonia gas was continually bubbled through a
solution of 3b (0.20 g; 0.83 mmol) in acetonitrile (10 mL)
at 25 ꢁC for 10 min. The reaction mixture was kept in a
sealed tube and stirred at the same temperature for 16 h.
After removal of the solvent under reduced pressure, the
residue was treated with 5%, aqueous NaHCO3 (20 mL)
and extracted with CH2Cl2 (3 · 20 mL). The combined
extracts were dried (MgSO4), the solvent was evaporated,
and the residue was purified by chromatography with
Et3N-deactivated silica gel eluting with 5:1 AcOEt/MeOH
(Rf = 0.30); yield 85%; mp 124–125 ꢁC (colorless prisms,
Et2O); IR (nujol) 3312, 1492, 1228, 1132, 977, 835,
1
764 cmÀ1; H NMR (CDCl3) d 2.61 (broad s, 1 H, NH),
3.81 (s, 2H), 4.02 (s, 2H), 7.41–7.47 (m, 2H), 7.53 (ddd,
1H, J = 7.8 Hz, J = 7.1 Hz, J = 2.0 Hz), 7.70 (s, 1H), 7.92
(dd, 1H, J = 7.8 Hz, J = 1.0 Hz); 13C NMR (CDCl3) d
38.8 (t), 48.6 (t), 122.7 (d), 129.1 (d), 129.2 (d), 130.0 (d),
131.2 (s), 132.0 (d), 135.3 (s), 136.6 (s); MS (EI, 70 eV) m/z
(rel int) 186 (M+, 12), 157 (100), 130 (22), 103 (22), 102
(25). Anal. Calcd for C10H10N4 (186.21): C, 64.50; H, 5.41;
N, 30.09. Found: C, 64.26; H, 5.80; N, 30.04.
5. (a) Coffen, D. L.; Fryer, R. I.; Katonak, D. A.; Wong, F.
J. Org. Chem. 1975, 40, 894–897; (b) Broggini, G.;
Molteni, G.; Zecchi, G. Synthesis 1995, 647–648; (c)
Broggini, G.; Molteni, G.; Terraneo, A.; Zecchi, G.
Tetrahedron 1999, 55, 14803–14806; (d) Garanti, L.;
Molteni, G.; Broggini, G. J. Chem. Soc., Perkin Trans. 1
2001, 1816–1819; (e) Thomas, A. W. Bioorg. Med. Chem.
Lett. 2002, 12, 1881–1884; (f) Akritopoulou-Zanze, I.;
Gracias, V.; Djuric, S. W. Tetrahedron Lett. 2004, 45,
8439–8441; (g) Gracias, V.; Darczak, D.; Gasiecki, A. F.;
Djuric, S. W. Tetrahedron Lett. 2005, 46, 9053–9056; (h)
16. The sense and level of stereocontrol observed in the
formation of 5h,i follow similar trends to those previously
reported for the reactions of the chiral amino alcohols