3546
J.-M. Ahn, S.-Y. Han / Tetrahedron Letters 48 (2007) 3543–3547
NHR1
OR2
concept, two tris-benzamides were prepared to represent
two helical regions in glucagon and will be evaluated for
receptor binding and biological activity.
NHR1
OR2
NHR1
OR2
a
d,e
f
O
NH
OH
Acknowledgments
O
O
O
OH
2a: R1=Boc, R2=Bn
2b: R1=Boc, R2=Me
8: R1=Ac, R2=Bn
9: R1=Ac, R2=Bn
10: R1=Boc, R2=Me
We gratefully acknowledge the University of Texas at
Dallas for start-up funds. This material is based in part
upon work supported by the Welch Foundation (Grant
No. AT-1595) and the Texas Advanced Research Pro-
gram (Grant No. 009741-0031-2006).
b,c
O
O
11: R1=Ac, R2=Bn
12: R1=Boc, R2=Me
NHR1
OR2
NHR1
OR2
NHR1
OR2
Supplementary data
O
NH
O
NH
Available for experimental procedures and spectral
characterization. Supplementary data associated with
this article can be found, in the online version, at
OR3
OR3
a,g
h
O
NH
OR3
O
NH
O
NH
OR4
OH
O
O
References and notes
13: R1=Ac, R2=Bn
R3=4-F-Bn
14: R1=Boc, R2=Me
R3=Bn
O
O
O
O
1. Barlow, D. J.; Thornton, J. M. J. Mol. Biol. 1988, 201,
601–619.
2. Cochran, A. G. Chem. Biol. 2000, 7, R85–R94.
3. Peczuh, M. W.; Hamilton, A. D. Chem. Rev. 2000, 100,
2479–2494.
17: R1=Ac, R2=Bn
R3,4=4-F-Bn
18: R1=Boc, R2=Me
15: R1=Ac, R2=Bn
R3=4-F-Bn
16: R1=Boc, R2=Me
R3=Bn
R3=Bn
R4=2-naphthylmethyl
4. Sillerud, L. O.; Larson, R. S. Curr. Protein Pept. Sci. 2005,
6, 151–169.
5. Che, Y.; Brooks, B. R.; Marshall, G. R. J. Comput. Aided
Mol. Des. 2006, 20, 109–130.
6. Scholtz, J. M.; Baldwin, R. L. Annu. Rev. Biophys. Biomol.
Struct. 1992, 21, 95–118.
7. Mayne, L.; Englander, S. W.; Qiu, R.; Yang, J.; Gong, Y.;
Spek, E. J.; Kallenbach, N. R. J. Am. Chem. Soc. 1998,
120, 10643–10645.
Scheme 2. Synthetic scheme to produce two tris-benzamides as a-helix
mimetics for glucagon. Reagents and conditions: (a) NaOH/MeOH/
THF, 60 °C, 2 h; (b) 20% TFA/DCM, rt, 2 h; (c) Ac2O, DMAP, rt,
12 h, 97% over two steps (b, c); (d) SOCl2, THF, DMF (cat), 60 °C,
2 h; (e) methyl 4-amino-3-hydroxybenzoate (5), DIPEA, DCM/THF,
0 °C!rt, 2 h, 82% (11) and 77% (12) over three steps (a, d, e); (f) R3X,
NaH, DMF, rt, 2 h, 77% (13) and 80% (14); (g) 5, BOP, DIPEA,
DCM, rt, 2 h, 74% (15) and 77% (16) over two steps (a, g); (h) R4X,
NaH, DMF, rt, 2 h, 61% (17) and 86% (18).
8. Jackson, D. Y.; King, D. S.; Chmielewski, J.; Singh, S.;
Schultz, P. G. J. Am. Chem. Soc. 1991, 113, 9391–
9392.
¨
9. Osapay, G.; Taylor, J. W. J. Am. Chem. Soc. 1990, 112,
The synthesis of two tris-benzamides (17 and 18) is sum-
marized in Scheme 2. After the alkylation of hydroxy-
benzoate (1), methyl ester (8 or 2b) was hydrolyzed
using NaOH, and methyl 4-amino-3-hydroxybenzoate
(5) was coupled to benzoic acid (9 or 10) using SOCl2,
resulting in a bis-benzamide containing one alkyl group
(11 or 12) corresponding to the i position of a helix. The
alkylation and coupling reactions were repeated twice to
place two other functional groups corresponding to the
i + 4 (or i + 3) and i + 7 positions, and the target tris-
benzamides (17 and 18) were easily synthesized with
high yield.
6046–6051.
10. Yu, C.; Taylor, J. W. Bioorg. Med. Chem. 1999, 7, 161–
175.
11. Albert, J. S.; Hamilton, A. D. Biochemistry 1995, 34, 984–
990.
12. Karle, I. L.; Balaram, P. Biochemistry 1990, 29, 6747–
6756.
13. Horwell, D. C.; Howson, W.; Ratcliffe, G. S.; Willems, H.
M. G. Bioorg. Med. Chem. 1996, 4, 33–42.
14. Jacoby, E. Bioorg. Med. Chem. Lett. 2002, 12, 891–893.
15. Orner, B. P.; Ernst, J. T.; Hamilton, A. D. J. Am. Chem.
Soc. 2001, 123, 5382–5383.
16. Yin, H.; Lee, G.-I.; Park, H. S.; Payne, G. A.; Rodriguez,
J. M.; Sebti, S. M.; Hamilton, A. D. Angew. Chem., Int.
Ed. 2005, 44, 2704–2707.
17. Ernst, J. T.; Becerril, J.; Park, H. S.; Yin, H.; Hamilton, A.
D. Angew. Chem., Int. Ed. 2003, 42, 535–539.
18. Oguri, H.; Oomura, A.; Tanabe, S.; Hirama, M. Tetrahe-
dron Lett. 2005, 46, 2179–2183.
19. Mohamadi, F.; Richards, N. G. J.; Guida, W. C.;
Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.;
Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11,
440–467.
In summary, a new a-helix mimetic was designed using a
tris-benzamide as a rigid scaffold, and it mimics one face
of a helix, displaying functional groups found at the i,
i + 4, and i + 7 positions. Its facile and rapid synthesis
was achieved by using simple alkylation and amide
bond-formation reactions which can be easily adapted
for solid-phase synthesis to construct a combinatorial li-
brary of a-helix mimetics. To demonstrate the proof of