Scheme 1. Mechanistic Rationale for the Proposed One Step
Synthesis of Erythrinanes from Simple Furans
Figure 1. Selected erythrina alkaloids (with an aromatic D ring).
exceptionally mild reaction conditions. The one-pot
reaction sequence involves, but is by no means limited
to, an N-acyliminium ion (NAI) formation and a Pictet-
Spengler-type reaction and begins from simple and
readily accessible furan precursors. It is important for
the efficiency of the process that there is no lengthy
substrate synthesis beforehand (Scheme 1). The devel-
opment of this novel process was facilitated by our
recent discovery of a new way to access NAIs beginning
with singlet oxygen-mediated furan photooxygenation.8
This one-pot reaction sequence is notable particularly
for its concise and rapid increase in molecular complexity
from a very simple starting point (outlined mechanistically
in Scheme 1). In this way it exhibits a very high degree of
step-9 and atom-economy10 and this feature, in combina-
tion with its utilization of the selective green reagent,
singlet oxygen, to mediate the changes with precision and
minimal waste, mean that it succeeds in attaining many of
the recently established criteria for an ideal synthesis.11
Furthermore, it intrinsically exhibits a number of other
unique and highly advantageous characteristics. First, the
1,4-dielectrophile (B, Scheme 1) accessed by singlet oxygen
oxidation of a furan (A f B in itself a mild and highly
selective process with broad functional group tolerance)
is of a specific nature such that the subsequent conden-
sation with an amine (B f E) can be achieved under
milder conditions than when other 1,4-dielectrophiles of
a more classical nature are used.6 This endows the over-
all process with broad enough functional group toler-
ance to allow a sensitive aldehyde moiety to be carried
through to the end of the sequence whereby intermediate
E is converted into F (Scheme 1). Second, the way this
one-pot process has been designed allows us first to
exploit the enamide’s (E) nucleophilicity and then the
NAI’s (F) electrophilicity. Since interconversion of the
enamide E and NAI F is relatively easy (via protonation/
deprotonation), it should be noted that a reversal in
the order of reactivity would terminate this particular
sequence without construction of the A-ring of the
erythrinane skeleton; so the relative reactivity (between
the C-ring forming reaction and A-ring forming reaction)
(4) For selected example syntheses of aromatic erythrina alkaloids of
the past decade not using a Pictet-Spengler/NAI cyclization for C5ÀC13
bond formation, see: (a) Joo, J. M.; David, R. A.; Yuan, Y.; Lee, C. Org.
Lett. 2010, 12, 5704. (b) Tuan, L. A.; Kim, G. Bull. Korean Chem. Soc.
2010, 31, 1800. (c) Liang, J.; Chen, J.; Liu, J.; Li, L.; Zhang, H. Chem.
Commun. 2010, 46, 3666. (d) Onoda, T.; Takikawa, Y.; Fujimoto, T.;
Yasui, Y.; Suzuki, K.; Matsumoto, T. Synlett 2009, 1041. (e) Yoshida,
Y.; Mohri, K.; Isobe, K.; Itoh, T.; Yamamoto, K. J. Org. Chem. 2009,
74, 6010. (f) Stanislawski, P. C.; Willis, A. C.; Banwell, M. G. Chem.
Asian J. 2007, 2, 1127. (g) Shimizu, K.; Takimoto, M.; Sato, Y.; Mori, M.
J. Organomet. Chem. 2006, 691, 5466. (h) Stanislawski, P. C.; Willis,
A. C.; Banwell, M. G. Org. Lett. 2006, 8, 2143. (i) Kim, G.; Kim, J. H.;
Lee, K. Y. J. Org. Chem. 2006, 71, 2185. (j) Yasui, Y.; Suzuki, K.;
Matsumoto, T. Synlett 2004, 619. (k) Fukumoto, H.; Esumi, T.;
Ishihara, J.; Hatakeyama, S. Tetrahedron Lett. 2003, 44, 8047. (l)
Shimizu, K.; Takimoto, M.; Mori, M. Org. Lett. 2003, 5, 2323.
(5) For the earliest pioneering synthetic approaches, see: (a) Belleau,
B. J. Am. Chem. Soc. 1953, 75, 5765. (b) Mondon, A. Angew. Chem.
1956, 68, 578. (c) Prelog, V. Angew. Chem. 1957, 69, 33.
(6) (a) Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367.
(b) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff,
C. A. Chem. Rev. 2004, 104, 1431.
(7) Padwa, A.; Hennig, R.; Kappe, C. O.; Reger, T. S. J. Org. Chem.
1998, 63, 1144.
(8) (a) Kalaitzakis, D.; Montagnon, T.; Alexopoulou, I.;
Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2012, 51, 8868.
(b) Kalaitzakis, D.; Montagnon, T.; Antonatou, E.; Bardajı, N.;
Vassilikogiannakis, G. Chem.;Eur. J. 2013, 10.1002/chem.201301571.
(9) Wender, P. A.; Miller, B. L. Nature 2009, 460, 197.
(11) (a) Young, I. S; Baran, P. S. Nat. Chem. 2009, 1, 193. (b) Gaich,
T.; Baran, P. S. J. Org. Chem. 2010, 75, 4657. (c) Newhouse, T.; Baran,
P. S.; Hoffmann, R. W. Chem. Soc. Rev. 2009, 38, 3010. For the first
introduction to the “ideal synthesis” concept, see: (d) Hendrickson, J. B.
J. Am. Chem. Soc. 1975, 97, 5784.
(10) Trost, B. M. Science 1991, 254, 1471.
B
Org. Lett., Vol. XX, No. XX, XXXX