Zhang et al.
of a variety of 3,4-disubstituted coumarins by using the
palladium-catalyzed coupling of o-iodophenols with internal
alkynes and carbon monoxide. When a series of phenylalky-
lacetylenes was employed in the reaction, mixtures of regioi-
somers were obtained in all cases with modest regioselectivity.7j
Thus, it is of great interest to develop general protocols for the
synthesis of 3,4-disubstituted coumarins under mild reaction
conditions.
FIGURE 1. Diversified coumarins.
Transition-metal-catalyzed cross-coupling reactions with mul-
tifunctional substrates which proceed stepwise and display site-
selectivity are particularly attractive for synthetic chemists.
Diversified structures, often containing bioactive scaffolds, could
be generated via successive introduction of various substituents
in specific positions of the molecular skeleton. A number of
compounds bearing two or more leaving groups, especially
dihaloheteroarenes, have proven to be suitable partners for this
kind of transformation.8 Inspired by the recent advances of site-
selective transition-metal-catalyzed dicoupling reactions,8k we
conceived that the synthesis of differentially 3,4-disubstituted
coumarins could be achieved via Pd-catalyzed regioselective
cross-coupling reactions. The key step in our program is
installing R1 and R2 groups to the C-4 and C-3 positions of the
coumarin scaffold. By attaching leaving groups of different
reactivities to the electronically different C-3 and C-4 positions,
two substituents were expected to be successively installed into
the coumarin moiety. This controllable site-selectivity comes
from the chemoselectivity. We envisioned this strategy should
be particularly useful for the facile and concise synthesis of
diversified coumarin derivatives. Herein, we describe our efforts
for palladium-catalyzed site-selective dicouplings of 3-bromo-
4-trifloxycoumarins or 3-bromo-4-tosyloxycoumarins for the
synthesis of differentially 3,4-disubstituted coumarins.
a program to develop efficient methods for the synthesis of
diversified coumarin molecules (Figure 1), with the hope of
finding more active hits or leads for our particular biological
assays.
Although there are classical methods, such as the Perkin and
Pechman reactions,4 for the synthesis of a wide variety of
substituted coumarins, these methods often require the use of
strong acids and high temperatures. The scope of these
transformations is therefore somewhat limited. Recent research
has centered on the use of palladium-catalyzed C-C bond
formation leading to the 3- or 4-substituted coumarins,5 and the
number of transition-metal-catalyzed approaches for accessing
coumarins is increasing.6 However, most of these approaches
are focused on monosubstituted coumarins. Only limited ap-
plications of transition-metal-catalyzed reactions for the syn-
thesis of 3,4-disubstituted coumarins have been reported;
however, these impose restrictions upon substituent diversity
and also suffer from regioselectivity problems.7 For example,
Larock7i,j reported a novel synthetic method for the synthesis
(4) For selected examples, see: (a) von Pechmann, H.; Duisberg, C.
Chem. Ber. 1884, 17, 929. (b) Johnson, J. R. Org. React. 1942, 1, 210. (c)
Jones, G. Org. React. 1967, 15, 204. (d) Brufola, G.; Fringuelli, F.; Piermatti,
O.; Pizzo, F. Heterocycles 1996, 43, 1257. (e) Shirner, R. L. Org. React.
1942, 1, 1. (f) Narasimhan, N. S.; Mali, R. S.; Barve, M. V. Synthesis 1979,
906. (g) Yavari, I.; Hekmat-Shoar, R.; Zonouzi, A. Tetrahedron Lett. 1998,
39, 2391. (h) Cartwright, G. A.; McNab, W. J. Chem. Res. (S) 1997, 296.
(i) Alexander, V. M.; Bhat, R. P.; Samant, S. D. Tetrahedron Lett. 2005,
46, 6957 and references cited therein. (j) Sengh, V.; Sengh, J.; Kaur, K. P.;
Kad, G. L. J. Chem. Res. (S) 1997, 58. (k) Frere, S.; Thiery, V.; Besson, T.
Tetrahedron Lett. 2001, 42, 2791. (l) John, E. V. O.; Israelstam, S. S. J.
Org. Chem. 1961, 26, 240. (m) Hoefnagel, A. J.; Gennewagh, E. A.;
Downing, R. S.; Bekkum, H. V. J. Chem. Soc., Chem. Commun. 1995,
225. (n) Wu, J.; Diao, T.-N.; Sun, W.; Li, Y. Synth. Commun. 2006, 36,
2949. (o) Sharma, G. V. M.; Reddy, J. J.; Lakshmi, P. S.; Krishna, P. R.
Tetrahedron Lett. 2005, 46, 6119.
(5) For examples, see: (a) Tang, Z. Y.; Hu, Q.-S. AdV. Synth. Catal.
2004, 346, 1635. (b) Wu, J.; Liao, Y.; Yang, Z. J. Org. Chem. 2001, 66,
3642. (c) Lei, J.-G.; Xu, M.-H.; Lin, G.-Q. Synlett 2004, 2364. (d) Wu, J.;
Wang, L.; Fathi, R.; Yang, Z. Tetrahedron Lett. 2002, 43, 4395. (e) Schio,
L.; Chatreaux, F.; Klich, M. Tetrahedron Lett. 2000, 41, 1543. (f) Yao,
M.-L.; Deng, M.-Z. Heterocycl. Chem. 2000, 11, 380. (g) Wu, J.; Yang, Z.
J. Org. Chem. 2001, 66, 7875.
(6) (a) Shi, Z.; He, C. J. Org. Chem. 2004, 69, 3669 and references cited
therein. (b) Jia, C. G.; Piao, D. G.; Oyamada, J. Z.; Lu, W. J.; Kitamura,
T.; Fujiwara, Y. Science 2000, 287, 1992. (c) Fu¨rstner, A.; Mamane, V. J.
Org. Chem. 2002, 67, 6264. (d) Pastine, S. J.; Youn, S. W.; Sames, D.
Org. Lett. 2003, 5, 1055. (e) Youn, S. W.; Pastine, S. J.; Sames, D. Org.
Lett. 2004, 6, 581.
(7) (a) Rayabarapu, D. K.; Sambaiah, T.; Cheng, C. -H. Angew. Chem.,
Int. Ed. 2001, 40, 1286. (b) Yoneda, E.; Sugioka, T.; Hirao, K.; Zhang,
S.-W.; Takahashi, S. J. Chem. Soc., Perkin Trans. 1 1998, 477. (c) Van, T.
N.; Debenedetti, S.; De Kimpe, N. Tetrahedron Lett. 2003, 44, 4199. (d)
Catellani, M.; Chuisoli, G. P.; Fagnola, M. C.; Solari, G. Tetrahedron Lett.
1994, 35, 5919. (e) Catellani, M.; Chiusoli, G. P.; Fagnola, M. C.; Solari,
G. Tetrahedron Lett. 1994, 35, 5923. (f) Trost, B. M.; Toste, F. D. J. Am.
Chem. Soc. 1996, 118, 6305. (g) Jia, C.; Piao, D.; Oyamada, J.; Lu, W.;
Kitamura, T.; Fujiwara, Y. Science 2000, 287, 1992. (h) Jia, C.; Piao, D.;
Kitamura, T.; Fujiwara, Y. J. Org. Chem. 2000, 65, 7516. (i) Kadnikov, D.
V.; Larock, R. C. Org. Lett. 2000, 2, 3643. (j) Kadnikov, D. V.; Larock, R.
C. J. Org. Chem. 2003, 68, 9423. (k) Kitamura, T.; Yamamoto, K.; Kotani,
M.; Oyamada, J.; Jia, C.; Fujiwara, Y. Bull. Chem. Soc. Jpn. 2003, 76,
1889. (l) An, Z.; Catellani, M.; Chiusoli, G. P. Gazz. Chim. Ital. 1990,
120, 383. (m) Park, K. H.; Jung, G., II; Chung, Y. K. Synlett 2004, 2541.
Results and Discussion
Our strategy is based on the decoration of the readily available
coumarin core structure using site-selective cross-coupling
reactions. The key compound in our overall synthetic route was
identified as 4-hydroxycoumain. It is well-known that 4-hy-
droxycoumarins are useful intermediates for many industrial
products and several methods for their preparation have been
reported.9 Prompted by the recent advances of halogenation of
1,3-dicarbonyl compounds,10 we envisioned that 3-bromo-4-
(8) (a) Review on site-selective cross-coupling reactions of multiple
halogenated heterocycles, see: Schro¨ter, S.; Stock, C.; Bach, T. Tetrahedron
2005, 61, 2245. Selected examples: (b) Zezschwitz, P.; Petry, F.; Meijere,
A. Chem. Eur. J. 2001, 7, 4035. (c) Voigt, K.; Zezschwitz, P.; Rosauer,
K.; Lansky, A.; Adams, A.; Reiser, O.; Meijere, A. Eur. J. Org. Chem.
1998, 1521. (d) Handy, S. T.; Sabatini, J. J. Org. Lett. 2006, 8, 1537. (e)
Duan, X.-F.; Li, X.-H.; Li, F.-Y.; Huang, C.-H. Synthesis 2004, 2614. (f)
Kaswasaki, I.; Yamashita, M.; Ohta, S. J. Chem. Soc., Chem. Commun.
1994, 2085. (g) Bellina, F.; Anselmi, A.; Martina, F.; Rossi, R. Eur. J.
Org. Chem. 2003, 2290. (h) Bellina, F.; Falchi, E.; Rossi, R. Tetrahedron
2003, 59, 9091. (i) Christoforou, I. C.; Koutentis, P. A. Org. Biomol. Chem.
2007, 5, 1381. (j) Cerna, I.; Pohl, R.; Klepetarova, B.; Hocek, M. Org.
Lett. 2006, 8, 5389. (k) Conreaux, D.; Bossharth, E.; Monteiro, N.;
Desbordes, P.; Vors, J.; Balme, G. Org. Lett. 2007, 9, 271. (l) Pereira, R.;
Furst, A.; Iglesias, B.; Germain, P.; Gronemeyerb, H.; Lera, A. R. Org.
Biomol. Chem. 2006, 4, 4514. (m) Araujo-Junior, J. X.; Schmitt, M.;
Benderittera, P.; Bourguignon, J. Tetrahedron Lett. 2006, 47, 6125. (n) Dang,
T. T.; Rasool, N.; Dang, T. T.; Reinkea, H.; Langer, P. Tetrahedron Lett.
2007, 48, 845.
(9) Selected examples: (a) Jung, J.-C.; Jung, Y.-J.; Park, O.-S. Synth.
Commun. 2001, 31, 1195. (b) Kalinin, A. V.; Da, S.; Alcides, J. M.; Lopes,
C. C.; Lopes, R. S. C.; Snieckus, V. Tetrahedron Lett. 1998, 39, 4995. (c)
Mizuno, T.; Nishiguchi, I.; Hirashima, T.; Ogawa, A.; Kambe, N.; Sonoda,
N. Synthesis 1988, 257.
7280 J. Org. Chem., Vol. 72, No. 19, 2007