R. Patin˜o-Molina et al. / Tetrahedron Letters 48 (2007) 3613–3616
3615
2. To illustrate some tetrahydropyrimidine-2-ones with inter-
esting biological activities, see: (a) De Lucca, G. V.; Liang,
J.; De Lucca, I. J. Med. Chem. 1999, 42, 135–152; (b)
Adams, J. L.; Meek, T. D.; Mong, S.-M.; Johnson, R. K.;
Wetcalf, B. W. J. Med. Chem. 1988, 31, 1355–1359; (c)
Cohan, V. L.; Pettipher, E. R. Eur. Pat. Appl. E.P.
636369, 1995; Chem. Abstr. 1995, 122, 178386.
3. Poitout, L.; Thurieau, C.; Brault, V. Pat. Appl. WO
2001009090, 2001; Chem. Abstr. 2001, 134, 163050.
4. Tewari, N.; Tiwari, V. K.; Mishra, R. C.; Tripathi, R. P.;
Srivastava, A. K.; Ahmad, R.; Srivastava, R.; Srivastava,
B. S. Bioorg. Med. Chem. Lett. 2003, 11, 2911–2922.
5. Jones, Kathryn A.; Weaver, Donald F.; Tiedje, Kathryn
E. Pat. Appl. WO 2004009559, 2004; Chem. Abstr. 2004,
140, 146155.
6. Embrey, M. W.; Wai, J. S.; Funk, T. W.; Homnick, C. F.;
Perlow, D. S.; Young, S. D.; Vacca, J. P.; Hazuda, D. J.;
Felock, P. J.; Stillmock, K. A.; Witmer, M. V.; Moyer, G.;
Schleif, W. A.; Gabryelski, L. J.; Jin, L.; Chen, I.-W.; Ellis,
J. D.; Wong, B. K.; Lin, J. H.; Leonard, Y. M.; Tsou, N. N.;
Zhuang, L. Bioorg. Med. Chem. Lett. 2005, 15, 4550–4554.
7. Konopelski, J. P.; Filonova, L. K.; Olmstead, M. M. J.
Am. Chem. Soc. 1997, 119, 4305–4306.
mer in each case. This confirms the lack of racemization
during the synthesis of precursor 1. As demonstrated
with the synthesis of 13 and 14, the 6-(amino)methyl
substituent, as well as the 6-(carboxy)methyl counter-
part, could serve to extend the variety of groups at the
C6 substituent level. The synthesis of 14 also allowed
us to unequivocally assign the C6 configuration of a pair
of diastereoisomers of 14 prepared by an alternative
method12,18 (Scheme 2).
In summary, we have developed a short, simple, and
highly enantioselective synthetic procedure for the prep-
aration of 1,3,6-trisubstituted 2,4-dioxohexahydro-
pyrimidines. The key steps of this process are the
formation of urea-substituted homoaspartic acid deriva-
tives, the base-promoted cyclization to the tetrahydro-
pyrimidinedione ring, and the alkylation at position
N1. The application of this heterocyclic scaffold in the
generation of molecular diversity, by using different iso-
cyanates (providing the substituents at N3), diverse
alkylating agents (at N1), and by the incorporation of
amines or acyl groups at the C6 substituents, may be
anticipated.
8. Hopkins, S. A.; Ritsema, T. A.; Konopelski, J. P. J. Org.
Chem. 1999, 64, 7885–7889.
9. (a) Agami, C.; Dechoux, L.; Melaimi, M. Tetrahedron
Lett. 2001, 42, 8629; (b) Scannell, M. P.; Prakash, G.;
Falvey, D. E. J. Phys. Chem. A 1997, 101, 4332–4337.
10. Hakkou, H.; Vanden Eynde, J. J.; Hamelin, J.; Bazureau,
J. P. Tetrahedron 2004, 60, 3745–3753.
Acknowledgment
11. Martins, M. A. P.; Teixeira, M. V. M.; Cunico, W.;
Scapin, E.; Mayer, R.; Pereira, C. M. P.; Zanatta, N.;
Bonacorso, H. G.; Peppe, C.; Yuan, Y.-F. Tetrahedron
Lett. 2004, 45, 8991–8994.
We thank the Plan Nacional de Biomedicina (SAF 2003-
07207-C02) for financial support.
´
´
12. Patino-Molina, R.; Garcıa-Lopez, M. T.; Cenarruzabeitia,
˜
´
´
E.; Del Rıo, J.; Gonzalez-Muniz, R. Synthesis 2007, 1047–
1053.
˜
References and notes
13. This transformation was described to proceed without
appreciable racemization: Plucinska, K.; Liberek, B.
Tetrahedron 1987, 43, 3509–3517.
14. Misiti, D.; Santaniello, M.; Zappia, G. Bioorg. Med.
Chem. Lett. 1992, 2, 1029–1032.
1. Representative examples of bioactive dihydropyrimidi-
nones include: antivirals (a) Botta, M.; Occhionero, F.;
Nicoletti, R.; Mastromarino, P.; Conti, C.; Magrini, M.;
Saladino, R. Bioorg. Med. Chem. Lett. 1999, 9, 1925–1931;
(b) Botta, M.; Corelli, F.; Maga, G.; Manetti, F.; Renzulli,
M.; Spadari, S. Tetrahedron 2001, 57, 8357–8367; (c)
Balzarini, J.; McGuigan, C. J. Antimicrob. Chemother.
2002, 50, 5–9; (d) McGuigan, C.; Pathirana, R. N.;
Snoeck, R.; Andrei, G.; De Clercq, E.; Balzarini, J. J.
Med. Chem. 2004, 47, 1847–1851; (e) Stray, S. J.; Bourne,
C. R.; Punna, S.; Lewis, W. G.; Finn, M. G.; Zlotnick, A.
Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 8138–8143; (f)
Semaine, W.; Johar, M.; Lorne, D.; Tyrrell, J.; Kumar, R.;
Agrawal, B. J. Med. Chem. 2006, 49, 2049–2054; Calcium
channel blockers (g) Atwal, K. S.; Rovnyak, G. C.;
Schwartz, J.; Moreland, S.; Hedberg, A.; Gougoutas, J. Z.;
Malley, M. F.; Floyd, D. M. J. Med. Chem. 1990, 33,
1510–1515; a 1a-Antagonists (h) Barrow, J. C.; Nanter-
met, P. G.; Selnick, H. G.; Glass, K. L.; Rittle, K. E.;
Gilbert, K. F.; Steele, T. G.; Homnick, C. F.; Freidinger,
R. M.; Ransom, R. W.; Kling, P.; Reiss, D.; Broten, T. P.;
Schorn, T. W.; Chang, R. S. L.; O’Malley, S. S.; Olah, T.
V.; Ellis, J. D.; Barrish, A.; Kassahun, K.; Leppert, P.;
Nagarathnam, D.; Forray, C. J. Med. Chem. 2000, 43,
15. Representative analytical and spectroscopic data of com-
pound 4: [a]D À41.9 (c 0.99, CHCl3). 1H NMR (300 MHz,
CDCl3): d 7.45–7.15 (m, 5H, C6H5), 6.33 (br s, 1H, H-1),
4.05 (m, 1H, H-6), 2.95 (ddd, 1H, J = 16.3, 5.1, 0.8, H-5),
2.66 (dd, 1H, J = 16.3, 8.6, H-5), 2.55 (m, 2H, 6-CH2),
t
1.49 (s, 9H, Bu). 13C NMR (75 MHz, CDCl3): d 169.4,
168.5, 153.7 (CO), 134.7, 129.1, 128.6, 128.5 (Ar), 82.4 (C,
tBu), 43.5 (C-6), 40.2 (C-5), 36.9 (6-CH2), 28.0 (CH3, tBu).
Anal. Calcd for C16H20N2O4: C, 63.14; H, 6.62; N, 9.20.
Found: C, 63.05; H, 6.65; N, 9.24.
16. Analytical and spectroscopic data of selected compounds:
Compound 7: [a]D À17.9 (c 0.92, CHCl3). 1H NMR
(300 MHz, CDCl3): d 7.47–7.17 (m, 5H, C6H5), 4.54 (d,
1H, J = 17.7, 1-CH2) 4.09 (d, 1H, J = 17.7, 1-CH2), 4.06
(m, 1H, H-6), 3.76 (s, 3H, OMe), 3.35 (dd, 1H, J = 16.3,
6.3, H-5), 2.86 (dd, 1H, J = 16.7, 7.3, 6-CH2), 2.77 (dd,
1H, J = 16.3, 1.9, H-5), 2.59 (dd, 1H, J = 16.7, 6.3, 6-
t
CH2), 1.45 (s, 9H, Bu). 13C NMR (75 MHz, CDCl3): d
169.7, 169.6, 168.4, 152.8 (CO), 134.9, 129.0, 128.5, 128.4
t
(Ar), 82.1 (C, Bu), 52.3 (OMe), 48.9 (C-6), 49.2 (1-CH2),
`
`
2703–2718; (i) Patane, E.; Pittala, V.; Guerrera, F.;
Salerno, L.; Romeo, G.; Siracusa, M. A.; Russo, F.;
Manetti, F.; Botta, M.; Mereghetti, I.; Cagnotto, A.;
Mennini, T. J. Med. Chem. 2005, 48, 2420–2431; Angio-
tensin II receptor antagonists (j) Atwal, K. S.; Ahmed, S.
Z.; Bird, J. E.; Delaney, C. L.; Dickinson, K. E.; Ferrara,
F. N.; Hedberg, A.; Miller, A. V.; Moreland, S.; O’Reilly,
B. C. J. Med. Chem. 1992, 35, 4751–4763.
38.9 (C-5), 37.2 (6-CH2), 27.9 (CH3, tBu). Anal. Calcd for
C19H24N2O6: C, 60.63; H, 6.43; N, 7.44. Found: C, 60.74;
H, 6.40; N, 7.47.
Compound 10: [a]D +6.20 (c 0.55, CHCl3). 1H NMR
(300 MHz, CDCl3): d 7.44–7.13 (m, 5H, C6H5), 6.38 and
5.78 (br s, 2H, CONH2), 4.32 (d, 1H, J = 17.7, 1-CH2)
4.11 (d, 1H, J = 17.7, 1-CH2), 4.00 (m, 1H, H-6), 3.72 (s,