Porphyrin-Diones and Porphyrin-Tetraones
A R T I C L E S
Cyclic ketones and quinones have carbonyl groups in which
the carbonyl carbons are both part of the functional group and
part of the ring structure. Electrochemical properties of numer-
ous diones and 1,2-quinones and ESR characterization of the
related semidiones, their one-electron reduction product, have
been extensively studied.8-12 The only macrocycles similar to
a porphyrin to have been investigated were 5,15-dioxopor-
phodimethenes in which the oxo groups are on opposite meso-
positions, akin to an 18- or 22-atom p-quinone, thereby
disrupting the macrocyclic π-electron conjugation. Reduction
of these compounds, however, involves the macrocycle.13
Porphyrin-2,3-diones,14-15 porphyrin-2,3,7,8-tetraones, and
porphyrin-2,3,12,13-tetraones,16-17 which contain R-dione units
across â,â′-pyrrolic positions on the porphyrin periphery, are
versatile building blocks for the synthesis of laterally extended
porphyrin arrays based on linear and square grid architectures
by annulation reactions involving the R-dione units.14-48 Reac-
tion of porphyrin-2,3-diones with 1,2-diamino-arenes gives ring-
fused quinoxalino[2,3-b]porphyrins,14-46 while reaction with
ammonium acetate and aldehydes gives imidazolo[4,5-b]por-
phyrins.47,48 Use of 1,2,4,5-arenetetramines or dialdehydes in
these reactions allows synthesis of corresponding linked bis-
porphyrins.17,18,29,30,32,33,37,39,44 Similar reactions of the porphyrin-
tetraones give linearly annulated diquinoxalinoporphyrins and
diimidazoloporphyrins16,47 and, when 1,2,4,5-arenetetramines are
used, laterally extended porphyrin-based oligomers,16,18,19,31,43,46
an example being a conjugated planar tetrakis-porphyrin that
spans 6.5 nm which provides for the development of new classes
of organic materials for molecular wires.16,19,49-53 The dione
functionality can be transformed into other units to give ring-
expanded and ring-contracted porphyrin systems.14,54
There is no reported data in the literature on the redox
properties of porphyrin-R-diones and porphyrin-tetraones, and
nothing is therefore known about the potentials for their
electroreduction or degree of delocalization of the added
electron. Reduction of the electroactive dione units should lead
first to a semidione radical anion. These semidione radical
anions have an increased double bond character between the
carbonyl carbon atoms relative to diones.11 There are two
possible fates for the newly generated carbon-carbon electron
density; it can become part of an aromaticity of the macrocyclic
ring in a fashion similar to that seen in the one-electron reduction
of ortho-quinones which leads to an aromatic semiquinone
radical anion, or it might function as the isolated semidione
radical anion in which aromaticity of the rest of the macrocycle
is maintained in a chlorin- or bacteriochlorin-like delocalization
pathway.
This paper reports the electrochemistry and spectroelectro-
chemistry of porphyrin-diones and porphyrin-tetraones that
exhibit unique redox properties in that they have a redox-active
dione unit that can function independently of the macrocycle.
The investigated complexes are shown in Chart 1. The 15
compounds can be divided into three distinct structural types:
porphyrin-2,3-diones [(P-dione)M 2a-e], linear porphyrin-2,3,-
12,13-tetraones [L-(P-tetraone)M 3a-e], and corner porphyrin-
2,3,7,8-tetraones [C-(P-tetraone)M 4a-e], where P is 5,10,15,-
20-tetrakis(3,5-di-tert-butylphenyl)porphyrin and M ) 2H, CuII,
ZnII, NiII, and PdII, a-e, respectively.
A comparison of the properties of porphyrin-diones 2a-e
and porphyrin-tetraones 3a-e and 4a-e with those of the parent
porphyrin and its metalated derivatives [(P)M 1a-e] is made
and shows that initial redox reactions occur at the dione units
and are largely independent of the rest of the macrocycle,
including the central metal ion and number and location of the
(8) Heineman, W. R.; Burnett, J. N.; Murray, R. W. Anal. Chem. 1968, 40,
1974.
(9) Dirlam, J. P.; Winstein, S. J. Org. Chem. 1971, 36, 1559.
(10) Rubin, M. B.; Ben-Bassat, J. M. Tetrahedron Lett. 1971, 37, 3403.
(11) (a) Russell, G. A.; Bruni, P. Tetrahedron 1970, 26, 3449. (b) Russell, G.
A.; Gerlock, J. L.; Lawson, D. F. J. Am. Chem. Soc. 1971, 93, 4088.
(12) Elson, I. H.; Kemp, T. J.; Greatorex, D.; Jenkins, H. D. B. J. Chem. Soc.,
Faraday Trans. 2 1973, 69, 665.
(13) (a) Barnett, G. H.; Evans, B.; Smith, K. M. Tetrahedron 1975, 31, 2711.
(b) Fuhrhop, J. H.; Baumgartner, E.; Bauer, H. J. Am. Chem. Soc. 1981,
103, 5854. (c) Balch, A. L.; Noll, B. C.; Phillips, S. L.; Reid, S. M.; Zovinka,
E. P. Inorg. Chem. 1993, 32, 4730. (d) Balch, A. L.; Noll, B. C.; Olmstead,
M. M.; Phillips, S. L. Inorg. Chem. 1996, 35, 6495. (e) Khoury, R. G.;
Jaquinod, L.; Nurco, D. J.; Smith, K. M. Chem. Commun. 1996, 1143.
(14) Crossley, M. J.; King, L. G. J. Chem. Soc., Chem. Commun. 1984, 920.
(15) Crossley, M. J.; Burn, P. L.; Langford, S. J.; Pyke, S. M.; Stark, A. G. J.
Chem. Soc., Chem. Commun. 1991, 1567.
(16) Crossley, M. J.; Govenlock, L. J.; Prashar, J. K. J. Chem. Soc., Chem.
Commun. 1995, 2379.
(17) Promarak, V.; Burn, P. J. Chem. Soc., Perkin Trans. 1 2001, 14.
(18) Crossley, M. J.; Burn, P. L. Chem. Commun. 1987, 39.
(19) Crossley, M. J.; Burn, P. L. J. Chem. Soc., Chem. Commun. 1991, 1569.
(20) Crossley, M. J.; King, L. G.; Newsom, I. A.; Sheehan, C. S. J. Chem.
Soc., Perkin Trans. 1 1996, 2675.
(21) Atkinson, E. J.; Oliver, A. M.; Paddon-Row, M. N. Tetrahedron Lett. 1993,
34, 6147.
(22) Crossley, M. J.; Burn, P. L.; Langford, S. J.; Prashar, J. K. J. Chem. Soc.,
Chem. Commun. 1995, 1921.
(23) Crossley, M. J.; Try, A. C.; Walton, R. Tetrahedron Lett. 1996, 37, 6807.
(24) Crossley, M. J.; Prashar, J. K. Tetrahedron Lett. 1997, 38, 6751.
(25) Reek, J. N. H.; Rowan, A. E.; de Gelder, R.; Beurskens, P. T.; Crossley,
M. J.; De Feyter, S.; de Schryver, F.; Nolte, R. J. M. Angew. Chem., Int.
Ed. 1997, 36, 361.
(26) Johnston, M. R.; Warrener, R. N.; Gunter, M. J. Chem. Commun. 1998,
2739.
(27) Reek, J. N. H.; Schenning, A. P. H. J.; Bosman, A. W.; Meijer, E. W.;
Crossley, M. J. Chem. Commun. 1998, 11.
(28) Reek, J. N. H.; Rowan, A. E.; Crossley, M. J.; Nolte, R. J. M. J. Org.
Chem. 1999, 64, 6653.
(29) Beavington, R.; Burn, P. L. J. Chem. Soc., Perkin Trans. 1 2000, 1231.
(30) Beavington, R.; Burn, P. L. J. Chem. Soc., Perkin Trans. 1 2000, 605.
(31) Yeow, E. K. L.; Sintic, P. J.; Cabral, N. M.; Reek, J. N. H.; Crossley, M.
J.; Ghiggino, K. P. Phys. Chem. Chem. Phys. 2000, 2, 4281.
(32) Flamigni, L.; Marconi, G.; Johnston, M. R. Phys. Chem. Chem. Phys. 2001,
3, 4488.
(45) Gaynor, S. P.; Gunter, M. J.; Johnston, M. R.; Warrener, R. N. Org. Biomol.
Chem. 2006, 4, 2253.
(33) Crossley, M. J.; Johnston, L. A. Chem. Commun. 2002, 1122.
(34) Crossley, M. J.; Thordarson, P. Angew. Chem., Int. Ed. 2002, 41, 1709.
(35) Flamigni, L.; Talarico, A. M.; Barigelletti, F.; Johnston, M. R. Photochem.
Photobiol. Sci. 2002, 1, 190.
(46) Ohkubo, K.; Sintic, P. J.; Tkachenko, N. V.; Lemmetyinen, H.; E, W.; Ou,
Z.; Shao, J.; Kadish, K. M.; Crossley, M. J.; Fukuzumi, S. Chem. Phys.
2006, 326, 3.
(47) Crossley, M. J.; McDonald, J. A. J. Chem. Soc., Perkin Trans. 1 1999,
242.
(36) Johnston, M. R.; Gunter, M. J.; Warrener, R. N. Tetrahedron 2002, 58,
3445.
(48) Kashiwagi, Y.; Ohkubo, K.; McDonald, J. A.; Blake, I. M.; Crossley, M.
J.; Araki, Y.; Ito, O.; Imahori, H.; Fukuzumi, S. Org. Lett. 2003, 5, 2719.
(49) Hush, N. S.; Reimers, J. R.; Hall, L. E.; Johnston, L. A.; Crossley, M. J.
Ann. N.Y. Acad. Sci. 1998, 852, 1.
(50) Anderson, H. L. Chem. Commun. 1999, 2323.
(51) Reimers, J. R.; Hall, L. E.; Crossley, M. J.; Hush, N. S. J. Phys. Chem. A
1999, 103, 4385.
(52) Reimers, J. R.; Hush, N. S.; Crossley, M. J. J. Porphyrins Phthalocyanines
2002, 6, 795.
(37) Johnston, M. R.; Latter, M. J. J. Porphyrins Phthalocyanines 2002, 6, 757.
(38) Johnston, M. R.; Latter, M. J.; Warrener, R. N. Org. Lett. 2002, 4, 2165.
(39) Sendt, K.; Johnston, L. A.; Hough, W. A.; Crossley, M. J.; Hush, N. S.;
Reimers, J. R. J. Am. Chem. Soc. 2002, 124, 9299.
(40) Crossley, M. J.; Sintic, P. J.; Walton, R.; Reimers, J. R. Org. Biomol. Chem.
2003, 1, 2777.
(41) Thordarson, P.; Marquis, A.; Crossley, M. J. Org. Biomol. Chem. 2003, 1,
1216.
(42) Warrener, R. N.; Sun, H.; Johnston, M. R. Aust. J. Chem. 2003, 56, 269.
(43) Crossley, M. J.; Sintic, P. J.; Hutchison, J. A.; Ghiggino, K. P. Org. Biomol.
Chem. 2005, 3, 852.
(44) Armstrong, R. S.; Foran, G. J.; Hough, W. A.; D’Alessandro, D. M.; Lay,
P. A.; Crossley, M. J. Dalton Trans. 2006, 4805.
(53) Reimers, J. R.; Bilic, A.; Cai, Z. -L.; Dahlbom, M.; Lambropoulos, N. A.;
Solomon, G. C.; Crossley, M. J.; Hush, N. S. Aust. J. Chem. 2004, 57,
1133.
(54) Crossley, M. J.; Hambley, T. W.; King, L. G. Bull. Soc. Chim. Fr. 1996,
133, 735.
9
J. AM. CHEM. SOC. VOL. 129, NO. 20, 2007 6577