Full Paper
[1] P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564.
[2] a) M. Stradiotto, R. J. Lundgren, Ligand Design in Metal Chemistry: Reactiv-
ity and Catalysis, John Wiley & Sons, Hoboken, NJ, 2016; b) J. F. Hartwig,
Acc. Chem. Res. 2008, 41, 1534.
[3] D. S. Surry, S. L. Buchwald, Angew. Chem. Int. Ed. 2008, 47, 6338; Angew.
Chem. 2008, 120, 6438.
[4] a) C. Valente, S. Çalimsiz, K. H. Hoi, D. Mallik, M. Sayah, M. G. Organ,
Angew. Chem. Int. Ed. 2012, 51, 3314; Angew. Chem. 2012, 124, 3370;
b) N. Marion, S. P. Nolan, Acc. Chem. Res. 2008, 41, 1440.
[5] V. V. Grushin, H. Alper, Chem. Rev. 1994, 94, 1047.
[6] J. D. Hayler, D. K. Leahy, E. M. Simmons, Organometallics 2019, 38, 36.
[7] a) S. Bhunia, G. G. Pawar, S. V. Kumar, Y. W. Jiang, D. W. Ma, Angew. Chem.
Int. Ed. 2017, 56, 16136; Angew. Chem. 2017, 129, 16352; b) F. Monnier,
M. Taillefer, Top. Organomet. Chem. 2013, 46, 173.
(0.05 equiv.), LiOtBu (1.5 equiv.), and aryl chloride (1.0 equiv.) were
added to a screw capped vial containing a magnetic stir bar, fol-
lowed by the addition of bis(cyclooctadiene)-nickel(0) (0.05 equiv.)
dissolved in CPME (0.5
M aryl halide). To this solution was added
morpholine (1.5 equiv.), and the vial was sealed with a cap contain-
ing a PTFE septum, removed from the glove-box and placed in a
temperature-controlled aluminum heating block set to 80 °C for
16 h under the influence of magnetic stirring. After cooling to
room-temperature, dodecane (0.12 mmol) was added to the reac-
tion mixture as an internal standard, so that the resulting mixture
could be quantitatively analyzed by using GC methods following
the workup method stated below.
Workup Method for Preparation of GC Samples: Following GP1
or GP2, (employing 0.12 mmol aryl halide) in air the reaction mix-
ture was diluted using ethyl acetate and was passed through a
Kimwipe filter containing Celite and silica gel, with the eluent col-
lected in a GC vial. Response-factor calibrated GC estimates are
given on the basis of data obtained from authentic materials using
dodecane or 1-phenyldodecane as internal standards.
[8] a) E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. DiRocco, I. W.
Davies, S. L. Buchwald, D. W. C. MacMillan, Science 2016, 353, 279; b) J.
Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C. MacMillan, Nat.
Rev. Chem. 2017, 1, 0052.
[9] Y. Kawamata, J. C. Vantourout, D. P. Hickey, P. Bai, L. Chen, Q. Hou, W.
Qiao, K. Barman, M. A. Edwards, A. F. Garrido-Castro, J. N. deGruyter, H.
Nakamura, K. Knouse, C. Qin, K. J. Clay, D. Bao, C. Li, J. T. Starr, C. Garcia-
Irizarry, N. Sach, H. S. White, M. Neurock, S. D. Minteer, P. S. Baran, J. Am.
Chem. Soc. 2019, 141, 6392.
Isolation of 2-Methyl-N-(2-thienylmethyl)–4-quinolinamine
(1b): The title compound was synthesized from the corresponding
aryl chloride (1.0 mmol) according to GP1. The reaction mixture was
diluted with ethyl acetate (20 mL) and washed with brine
(3 × 20 mL), and the organic layer was dried with sodium sulfate.
The solvent was removed in vacuo and the compound was purified
by flash column chromatography on silica gel using a trimethyl-
amine/ethyl acetate eluent (4 % triethylamine) which afforded the
title product in 89 % isolated yield (226 mg, 0.89 mmol) as an off-
white solid. 1H NMR (300 MHz; CDCl3): δ = 7.93 (m, 1H), 7.69 (m,
1H), 7.61 (m, 1H), 7.38 (m, 1H), 7.29 (dd, 1H, J1 = 5.1 Hz, J2 = 1.2),
7.10 (m, 1H), 7.02 (dd, 1H, J1 = 5.1 Hz, J2 = 3.5), 6.46 (s, 1H), 5.22
(br. s, 1H), 4.70 (d, 2H, J = 5.2 Hz), 2.63 (s, 3H). 13C{1H} UDEFT NMR
(125.8 MHz, CDCl3): δ = 160.0, 149.3, 148.7, 141.0, 129.7, 129.5,
127.5, 126.4, 125.7, 124.5, 119.4, 117.7, 100.1, 43.0, 26.2. HRMS m/z
ESI+ found 255.0957 [M + H]+ calculated for C15H15N2S 255.0950.
[10] C. M. Lavoie, M. Stradiotto, ACS Catal. 2018, 8, 7228.
[11] N. H. Park, G. Teverovskiy, S. L. Buchwald, Org. Lett. 2014, 16, 220.
[12] S. G. Rull, J. F. Blandez, M. R. Fructos, T. R. Belderrain, M. C. Nicasio, Adv.
Synth. Catal. 2015, 357, 907.
[13] C. M. Lavoie, P. M. MacQueen, N. L. Rotta-Loria, R. S. Sawatzky, A. Bor-
zenko, A. J. Chisholm, B. K. V. Hargreaves, R. McDonald, M. J. Ferguson,
M. Stradiotto, Nat. Commun. 2016, 7, 11073.
[14] S. Bajo, G. Laidlaw, A. R. Kennedy, S. Sproules, D. J. Nelson, Organometal-
lics 2017, 36, 1662.
[15] a) P. M. MacQueen, J. P. Tassone, C. Diaz, M. Stradiotto, J. Am. Chem. Soc.
2018, 140, 5023; b) J. P. Tassone, E. V. England, P. M. MacQueen, M. J.
Ferguson, M. Stradiotto, Angew. Chem. Int. Ed. 2019, 58, 2485; Angew.
Chem. 2019, 131, 2507; c) J. S. K. Clark, M. J. Ferguson, R. McDonald, M.
Stradiotto, Angew. Chem. Int. Ed. 2019, 58, 6391; Angew. Chem. 2019,
131, 6457.
[16] D. Gudat, Acc. Chem. Res. 2010, 43, 1307.
[17] A. V. Gatien, C. M. Lavoie, R. N. Bennett, M. J. Ferguson, R. McDonald,
E. R. Johnson, A. W. H. Speed, M. Stradiotto, ACS Catal. 2018, 8, 5328.
[18] R. T. McGuire, J. F. J. Paffile, Y. Zhou, M. Stradiotto, ACS Catal. 2019, 9,
9292.
Acknowledgments
[19] a) N. Dwadnia, J. Roger, N. Pirio, H. Cattey, J. C. Hierso, Coord. Chem. Rev.
2018, 355, 74; b) F. Allouch, N. V. Vologdin, H. Cattey, N. Pirio, D. Naoufal,
A. Kanj, R. V. Smaliy, A. Savateev, A. Marchenko, A. Hurieva, H. Koidan,
A. N. Kostyuk, J. C. Hierso, J. Organomet. Chem. 2013, 735, 38.
[20] C. Vallee, Y. Chauvin, J.-M. Basset, C. C. Santini, J.-C. Galland, Adv. Synth.
Catal. 2005, 347, 1835.
[21] X. K. Wang, A. Thevenon, J. L. Brosmer, I. S. Yu, S. I. Khan, P. Mehrkhodav-
andi, P. L. Diaconescu, J. Am. Chem. Soc. 2014, 136, 11264.
[22] S. P. Shum, S. D. Pastor, G. Rihs, Inorg. Chem. 2002, 41, 127.
[23] S. Burck, D. Gudat, M. Nieger, J. Tirree, Dalton Trans. 2007, 1891.
[24] J. S. K. Clark, C. N. Voth, M. J. Ferguson, M. Stradiotto, Organometallics
2017, 36, 679.
We are grateful to the NSERC of Canada (Discovery Grant
RGPIN-2014-04807 for M. S.; PGS-D for J. S. K. C.; CGS-M for
R. T. M.), the Province of Nova Scotia (Graduate Scholarship for
R. T. M.), the Killam Trusts, and Dalhousie University for their
support of this work. M. Y. S. acknowledges NSERC-CREATE Sus-
tainable Synthesis for supporting an internship in the Stradiotto
group. We also thank Dr. Michael Lumsden and Mr. Xiao Feng
(Dalhousie) for technical assistance in the acquisition of NMR
and MS data.
[25] J. W. Dube, G. J. Farrar, E. L. Norton, K. L. S. Szekely, B. F. T. Cooper, C. L. B.
Macdonald, Organometallics 2009, 28, 4377.
Keywords: Amination · C–N cross-coupling · Ferrocenyl
ligands · Ligand design · Nickel
Received: September 9, 2019
Eur. J. Inorg. Chem. 2019, 4112–4116
4116
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim