D. Teng et al. / Tetrahedron Letters 48 (2007) 4605–4607
4607
Scheme 5.
Mohr, P. J.; Halcomb, R. L. J. Am. Chem. Soc. 2003, 125,
1712; (n) Diaper, C. M.; Goldring, W. P. D.; Pattenden,
G. Org. Biomol. Chem. 2003, 3949.
Acknowledgments
Support from the National Institutes of Health, Institute
of General Medical Sciences (R01 GM064357) is grate-
fully acknowledged.
4. Seth, P. P.; Totah, N. I. Org. Lett. 2000, 2, 2507.
5. This approach stands in contrast to those generally set
forth by other researchers in which formation of the
pyrone unit is effected after macrocycle formation. Excep-
tions are found in the work of Hsung (Ref. 3j) and
Halcomb (Ref. 3m). In the former case, pyrone and
macrocycle are formed concurrently. In the latter, macro-
cyclization is effected with the oxadecalin system in place,
albeit in modest yield.
6. Chemler, S. R.; Danishefsky, S. J. Org. Lett. 2000, 2, 2695,
See also (Ref. 3m).
7. (a) Chen, D.; Wang, J.; Totah, N. I. J. Org. Chem. 1999,
64, 1776; (b) Seth, P. P.; Totah, N. I. J. Org. Chem. 1999,
64, 8750; (c) Seth, P. P.; Chen, D.; Wang, J.; Gao, X.;
Totah, N. I. Tetrahedron 2000, 56, 10185.
Supplementary data
Experimental procedures and characterization data for
compound 5 and all key intermediates. Supplementary
data associated with this article can be found, in the
References and notes
8. Totah, N. I.; Chen, D. Tetrahedron Lett. 1998, 56, 213.
9. Tricyclic ether 11a is formed via internal Michael addition
of the primary alcohol. Regeneration of enone 11 is
readily achieved upon treatment of the cyclic ether with an
excess of strong base, for example:
1. (a) Chu, M.; Patel, M. G.; Gullo, V. P.; Truumees, I.;
Puar, M. S. J. Org. Chem. 1992, 57, 5817; (b) Chu, M.;
Truumees, I.; Gunnarsson, I.; Bishop, W. R.; Kreutner,
W.; Horan, A. C.; Gullo, V. P.; Puar, M. S. J. Antibiot.
1993, 46, 554; (c) Sugano, M.; Sata, A.; Iijima, Y.; Furuya,
K.; Haruyama, H.; Yoda, K.; Hata, T. J. Org. Chem.
1994, 59, 564; (d) Sugano, M.; Sata, A.; Iijima, Y.;
Furuya, K.; Kuwano, H.; Hata, T. J. Antibiot. 1995, 48,
1188.
2. Sugano, M.; Sato, A.; Iijima, Y.; Oshima, T.; Furuya, K.;
Kuwano, H.; Hata, T.; Hanzawa, H. J. Am. Chem. Soc.
1991, 113, 5463.
10. The use of alternative protecting groups for the primary
alcohol was briefly explored. TBDMS, TBDPS, and PMB
ethers were found to be incompatible with the reductive
conditions used to generate enones of type 15.
11. (a) Grieco, P. A.; Gilman, S.; Nishizawa, N. J. Org. Chem.
1976, 41, 1485; (b) Sharpless, K. B.; Young, M. W. J. Org.
Chem. 1975, 40, 947.
12. (a) Miyaura, N.; Ishiyama, T.; Ishikawa, M.; Suzuki, A.
Tetrahedron Lett. 1986, 27, 6369; (b) Miyaura, N.;
Ishiyama, T.; Sasaki, H.; Ishikawa, M.; Satoh, M.; Suzuki,
A. J. Am. Chem. Soc. 1989, 111, 314; (c) Oh-e, T.;
Miyayra, N.; Suzuki, A. J. Org. Chem. 1993, 58, 2201; (d)
Sato, M.; Miyaura, N.; Suzuki, A. Chem. Lett. 1989, 1405.
13. Frank, S. A.; Chen, H.; Kunz, R. K.; Schnaderbeck, M. J.;
Roush, W. R. Org. Lett. 2000, 2, 2691.
3. Approaches: (a) Foote, K. M.; Hayes, C. J.; Pattenden, G.
Tetrahedron Lett. 1996, 37, 275; (b) Foote, K. M.; John,
M.; Pattenden, G. Synlett 2001, 365; (c) Mi, B.; Maleczka,
R. E. Org. Lett. 2001, 3, 1491; (d) Chemler, S. R.; Iserloh,
U.; Danishefsky, S. J. Org. Lett. 2001, 3, 2949; (e)
Houghton, T. J.; Choi, S.; Rawal, V. H. Org. Lett. 2001,
3, 3615; (f) Kallan, N. C.; Halcomb, R. L. Org. Lett. 2002,
2, 2687; (g) Mohr, P. J.; Halcomb, R. L. Org. Lett. 2002, 4,
2413; (h) Balnaves, A. S.; McGowan, G.; Shapland, D. P.;
Thomas, E. J. Tetrahedron Lett. 2003, 44, 2713; (i) Foote,
K. M.; Hayes, C. J.; John, M. P.; Pattenden, G. Org.
Biomol. Chem. 2003, 1, 3917; (j) Cole, K. P.; Hsung, R. P.
Org. Lett. 2003, 5, 4843; (k) Cole, K. P.; Hsung, R. P.
Chem. Commun. 2005, 5784; Total synthesis: (l) Goldring,
W. P. D.; Pattenden, G. Chem. Commun. 2002, 1736; (m)