10.1002/anie.202005720
Angewandte Chemie International Edition
RESEARCH ARTICLE
[11] a) G. Cainelli, F. Manescalchi, G. Martelli, M. Panunzio, L. Plessi,
Tetrahedron Lett. 1985, 26, 3369–3372; b) A. McKillop, M. E. Ford,
Tetrahedron 1974, 30, 2467–2475; c) T. Sueda, M. Shoji, K. Nishide,
Tetrahedron Lett. 2008, 49, 5070–5072; d) J. R. Hwu, K. A. Vyas, H. V.
Patel, C. H. Lin, J. C. Yang, Synthesis (Stuttg). 1994, 1, 471–473.
[12] a) R. M. A. Pinto, J. A. R. Salvador, C. Le Roux, Tetrahedron 2007, 63,
9221–9228; b) B. Das, M. Krishnaiah, K. Venkateswarlu, V. S. Reddy,
Helv. Chim. Acta 2007, 90, 110–113.
elimination and an outer sphere photoredox mechanism, was also
demonstrated. We anticipate that the mechanistic insights in
combination with physical properties of 1 elucidated herein will
guide future reaction development towards a more facile
introduction of the NO3 group onto various organic scaffolds,
thereby facilitating further investigations into the biological effects
imparted by this unique functional group.
[13] Y. A. Volkova, O. A. Ivanova, E. M. Budynina, E. B. Averina, T. S.
Kuznetsova, N. S. Zefirov, Tetrahedron Lett. 2008, 49, 3935–3938.
[14] H. I. Iranpoor, I. M. Baltork, Synth. Commun. 1990, 20, 2789–2797.
[15] Z. Liu, R. Li, D. Yang, L. Wu, Tetrahedron Lett. 2004, 45, 1565–1566.
[16] P. Guiding, R. W Millar, N. C Paul, D. H Richards, Tetrahedron Lett.
1988, 29, 2731–2734.
Acknowledgements
D.K and R.C gratefully acknowledge the financial support from the
ETH Zürich, the Holcim Stiftung and the Swiss National Science
Foundation (SNSF grant number PZ00P2 168043). The authors
thank Dr. Erich Meister for valuable assistance with spectroscopic
measurements, Diego Lorenzo Del Rio for synthetic contributions,
and Prof. Hans-Achim Wagenknecht as well as Prof. Frank
Breher for sharing parts of their infrastructure.
[17] a) T. Taniguchi, A. Yajima, H. Ishibashi, Adv. Synth. Catal. 2011, 353,
2643–2647; b) R. Bag, D. Sar, T. Punniyamurthy, ACS Omega 2017, 2,
6278–6290.
[18] a) E. Baciocchia, T. Del Giacco, G. V. Sebastiani, Tetrahedron Lett.
1987, 28, 1941–1944; b) W. S. Trahanovsky, M. D. Robbins, J. Am.
Chem. Soc. 1971, 93, 5256–5258; c) B. Yang, S.-M. Hou, S.-Y. Ding, X.-
N. Zhao, Y. Gao, X. Wang, S.-D. Yang, Adv. Synth. Catal. 2018, 360,
4470–4474.
[19] J. Barluenga, J. M. Martínez-Gallo, C. Nájera, M. Yus, J. Chem. Soc. -
Ser. Chem. Commun. 1985, 1422–1423.
Keywords: nitrate esters • photoredox catalysis • hypervalent
iodine • pulse radiolysis • spectroelectrochemistry
[20] T. H. Graham, C. M. Jones, N. T. Jui, D. W. C. MacMillan, J. Am. Chem.
Soc. 2008, 130, 16494–16495.
[21] S. Kamijo, Y. Amaoka, M. Inoue, Tetrahedron Lett. 2011, 52, 4654–4657.
[22] S. Thurow, A. A. G. Fernandes, Y. Quevedo-Acosta, M. F. de Oliveira,
M. G. de Oliveira, I. D. Jurberg, Org. Lett. 2019, 21, 6909–6913.
[23] a) R. Calvo, K. Zhang, A. Passera, D. Katayev, Nat. Commun. 2019, 10,
3410; b) K. Zhang, B. Jelier, A. Passera, G. Jeschke, D. Katayev, Chem.
– A Eur. J. 2019, 25, 12929–12939; c) K. Zhang, A. Budinská, A.
Passera, D. Katayev, Org. Lett. 2020, DOI 10.1021/acs.orglett.0c00671.
[24] R. Calvo, A. Comas-Vives, A. Togni, D. Katayev, Angew. Chem., Int. Ed.
2019, 58, 1447–1452.
[1]
[2]
P. G. Wang, T. Bill Cai, N. Taniguchi, Nitric Oxide Donors: For
Pharmaceutical and Biological Applications, Wiley-VCH, 2005.
a) B. J. R. Whittle, Curr. Opin. Pharmacol. 2004, 4, 538–545; b) M.
Anzini, A. Di Capua, S. Valenti, S. Brogi, M. Rovini, G. Giuliani, A.
Cappelli, S. Vomero, L. Chiasserini, A. Sega, et al., J. Med. Chem. 2013,
56, 3191–3206; c) M. Biava, G. C. Porretta, G. Poce, C. Battilocchio, S.
Alfonso, M. Rovini, S. Valenti, G. Giorgi, V. Calderone, A. Martelli, et al.,
J. Med. Chem. 2011, 54, 7759–7771; d) M. E. Shoman, M. Abdel-Aziz,
O. M. Aly, H. H. Farag, M. A. Morsy, Eur. J. Med. Chem. 2009, 44, 3068–
3076; e) A. H. Abadi, G. H. Hegazy, A. A. El-Zaher, Bioorganic Med.
Chem. 2005, 13, 5759–5765; f) J. L. Wallace, S. N. Elliott, P. Del Soldato,
W. McKnight, F. Sannicolo, G. Cirino, Drug Dev. Res. 1997, 42, 144–
149.
[25] a) Y. Li, D. P. Hari, M. V. Vita, J. Waser, Angew. Chemie, Int. Ed. 2016,
55, 4436–4454; b) L. Catalano, G. Cavallo, P. Metrangolo, G. Resnati,
G. Terraneo, in (Ed.: T. Wirth), Springer International Publishing, Cham,
2016, pp. 289–309; c) A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016,
116, 3328–3435; d) X. Li, P. Chen, G. Liu, Beilstein J. Org. Chem. 2018,
14, 1813–1825; e) X. Wang, A. Studer, Acc. Chem. Res. 2017, 50, 1712–
1724; f) S. V Kohlhepp, T. Gulder, Chem. Soc. Rev. Chem. Soc. Rev
2016, 6270, 6270–6288.
[3]
a) J. Kaur, A. Bhardwaj, Z. Huang, D. Narang, T.-Y. Chen, F. Plane, E.
E. Knaus, J. Med. Chem. 2012, 55, 7883–7891; b) Y. Tamboli, L.
Lazzarato, E. Marini, S. Guglielmo, M. Novelli, P. Beffy, P. Masiello, R.
Fruttero, A. Gasco, Bioorganic Med. Chem. Lett. 2012, 22, 3810–3815;
c) M. Digiacomo, A. Martelli, L. Testai, A. Lapucci, M. C. Breschi, V.
Calderone, S. Rapposelli, Bioorganic Med. Chem. 2015, 23, 422–428; d)
V. Calderone, S. Rapposelli, A. Martelli, M. Digiacomo, L. Testai, S. Torri,
P. Marchetti, M. C. Breschi, A. Balsamo, Bioorganic Med. Chem. 2009,
17, 5426–5432.
[26] a) D. Katayev, B. Jelier, A. Togni (Ed.: Berit Olofsson, Ilan Marek, Zvi
Rappoport), PATAI’S Chemistry of Functional Groups: The Chemistry of
Hypervalent Halogen Compounds Part 1; John Wiley & Sons, Ltd,
Chichester, UK, 2018, pp. 1-52; for the terminology “ligand coupling” see
reference: b) M. Ochiai, Hypervalent Iodine Chemistry, in: Topics in
Current Chemistry, Vol. 224, (Ed.: T. Wirth), Springer, Berlin, 2003, pp.
5-68; for the terminology “reductive elimination” see references: c) H.
Pinto de Magalhães, H. P. Lüthi, A. Togni, Org. Lett. 2012, 14, 3830–
3833; d) O. Sala, H. P. Lüthi, A. Togni, J. Comput. Chem. 2014, 35,
2122–2131; e) O. Sala, N. Santschi, S. Jungen, H. P. Lüthi, M. Iannuzzi,
N. Hauser, A. Togni, Chem. Eur. J. 2016, 22, 1704–1713.
[4]
M. Bertinaria, S. Guglielmo, B. Rolando, M. Giorgis, C. Aragno, R.
Fruttero, A. Gasco, S. Parapini, D. Taramelli, Y. C. Martins, et al., Eur. J.
Med. Chem. 2011, 46, 1757–1767.
[5]
[6]
J. Aliancy, W. D. Stamer, B. Wirostko, Ophthalmol. Ther. 2017, 6, 221–
232.
a) Z. Qin, J. Luo, L. VandeVrede, E. Tavassoli, M. Fa’, A. F. Teich, O.
Arancio, G. R. J. Thatcher, J. Med. Chem. 2012, 55, 6784–6801; b) Q.
Zhihui, Future Med. Chem. 2013, 5, 1451–1468l c) S. O. Abdul-Hay, J.
Luo, R. T. Ashghodom, G. R. J. Thatcher, J. Neurochem. 2009, 111,
766–776.
[27] Y. Kita, S. Akai, T. Okuno, M. Egi, T. Takada, H. Tohma, Heterocycles
1996, 42, 47.
[28] S. Benetti, R. Romagnoli, C. De Risi, G. Spalluto, V. Zanirato, Chem.
Rev. 1995, 95, 1065–1114.
[29] a) J. Zhang, K. J. Szabó, F. Himo, ACS Catal. 2017, 7, 1093–1100; b)
S. Shu, Y. Li, J. Jiang, Z. Ke, Y. Liu, J. Org. Chem. 2019, 84, 458–462.
[30] a) F. Zhou, Y.-L. Liu, J. Zhou, Adv. Synth. Catal. 2010, 352, 1381–1407;
b) A. Millemaggi, R. J. K. Taylor, European J. Org. Chem. 2010, 2010,
4527–4547; c) M. Kaur, M. Singh, N. Chadha, O. Silakari, Eur. J. Med.
Chem. 2016, 123, 858–894; d) M. Xia, R.-Z. Ma, J. Heterocycl. Chem.
2014, 51, 539–554; e) C. V. Galliford, K. A. Scheidt, Angew. Chemie.,
Int. Ed. 2007, 46, 8748–8758.
[7]
a) D. Hirst, T. Robson, J. Pharm. Pharmacol. 2007, 59, 3–13; b) S. Z.
Ren, Z. C. Wang, D. Zhu, X. H. Zhu, F. Q. Shen, S. Y. Wu, J. J. Chen,
C. Xu, H. L. Zhu, Eur. J. Med. Chem. 2018, 157, 909–924; c) Y. Ai, F.
Kang, Z. Huang, X. Xue, Y. Lai, S. Peng, J. Tian, Y. Zhang, J. Med.
Chem. 2015, 58, 2452–2464.
[8]
[9]
R. Boschan, R. T. Merrow, R. W. Van Dolah, Chem. Rev. 1955, 55, 485–
510.
G. A. Olah, R. Malhotra, S. C. Narang, Nitration: Methods and
Mechanisms, VCH Publishers, Inc, New York, USA, 1989.
[31] K. Kobayashi, Chem. Rev. 2019, 119, 4413–4462.
[32] N. Santschi, B. J. Jelier, S. Stähelin, T. Nauser, Org. Biomol. Chem.
2019, 17, 9734–9742.
[10] G. H. Hakimalahi, H. Sharghi, H. Zarrinmayeh, A. Khalafi-Nezhad, Helv.
Chim. Acta 1984, 67, 906–915.
6
This article is protected by copyright. All rights reserved.