A Supramolecular Assembly of Organotin Complexes
FULL PAPER
3746–3753; c) M. Nishio, M. Hirota, Y. Umezawa, The CH/π
Interaction: Evidence, Nature and Consequences, Wiley, New
York, 1998; d) J. Dai, M. Yamamoto, T. Kuroda-Sowa, M.
Maekawa, Y. Suenaga, M. Munakata, Inorg. Chem. 1997, 36,
2688–2690; e) M. Munakata, J. Dai, M. Maekwaw, T. Kuroda-
Sowa, J. Fukui, J. Chem. Soc., Chem. Commun. 1994, 2331–
2332; f) T. Kuroda-Sowa, M. Munakata, H. Matsuda, S. Aki-
yama, M. Maekawa, J. Chem. Soc., Dalton Trans. 1995, 2201–
2208; g) M. Nishio, Cryst. Eng. Commun. 2004, 6, 130–158.
semiempirical absorption correction was applied to the data. The
structures were solved by direct methods using SHELXS-97 and
refined against F2 by full-matrix least squares using SHELXL-97.
Non-hydrogen atoms were refined anisotropically, while hydrogen
atoms were placed in geometrically calculated positions using a ri-
ding model. Crystal data and experimental details of the structure
determinations are listed in Table 5. The molecular and supramo-
lecular structures in this paper were created with the X-Seed soft-
ware package.[35] CCDC-238964 (1), -254168 (3), -254166 (5), and
-254171 (9) contain the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The
Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/
data_request/cif.
[6]
[7]
I. Haiduc, F. T. Edelmann, Supramolecular Organometallic
Chemistry, Wiley-VCH, Weinheim, 1999.
a) J. Lu, W. T. A. Harrison, A. J. Jacobson, Angew. Chem. Int.
Ed. Engl. 1995, 34, 2557–2559; b) D. C. Apperley, N. A. Davies,
R. K. Harris, A. K. Brimah, S. Eller, R. D. Fischer, Organome-
tallics 1990, 9, 2672–2676; c) M. Hill, M. F. Mahon, J. McGin-
ley, K. C. Molly, J. Chem. Soc., Dalton Trans. 1996, 835–845;
d) L. Balázs, H. J. Breunig, E. Lork, C. I. Ra, Appl. Organomet.
Chem. 2005, 19, 1263–1267; e) C. Zucchi, S. Tiddia, R. Boese,
C. M. Tschoerner, L. Bencze, G. Pályi, Chirality 2001, 13, 458–
464; f) J. S. Casas, E. E. Castellano, J. Ellena, M. S. García-
Tasende, A. Sánchez, J. Sordo, A. Touceda, Z. Anorg. Allg.
Chem. 2005, 631, 2247–2252; g) Z. W. Gao, C. Y. Zhang, M. Y.
Dong, L. X. Gao, G. F. Zhang, Z. T. Liu, G. F. Wang, D. H.
Wu, Appl. Organomet. Chem. 2006, 20, 117–124.
Supporting Information (see footnote on the first page of this arti-
cle): Supromolecular structures of complexes 1, 3, 5, and 9 (Fig-
ures S1–S4).
Acknowledgments
The authors thank the National Natural Science Foundation of
China (20271025) for financial support.
[8]
a) R. García-Zarracino, H. Höpfl, Angew. Chem. Int. Ed. 2004,
43, 1507–1511; b) R. García-Zarracino, H. Höpfl, J. Am.
Chem. Soc. 2005, 127, 3120–3130; c) R. García-Zarracino, J.
Ramos-Quiñones, H. Höpfl, Inorg. Chem. 2003, 42, 3835–3845;
d) A. Goodger, M. Hill, M. F. Mahon, J. McGinley, K. C.
Molly, J. Chem. Soc., Dalton Trans. 1996, 847–852; e) F. Huber,
B. Mundus-Glowacki, H. Preut, J. Organomet. Chem. 1989,
365, 111–121.
[1] a) J.-M. Lehn, Science 2002, 295, 2400–2403; b) J.-M. Lehn,
Supramolecular Chemistry: Concepts and Perspectives, VCH,
Weinheim, 1995; c) J.-M. Lehn, Angew. Chem. Int. Ed. Engl.
1988, 27, 89–112; d) S. Subramanian, M. J. Zaworotko, Coord.
Chem. Rev. 1994, 137, 357–401; e) C. B. Aakeroy, K. R. Sed-
don, Chem. Soc. Rev. 1993, 22, 397–407; f) A. D. Burrows, C.-
W. Chan, M. M. Chowdhry, J. E. McGrady, D. M. P. Mingos,
Chem. Soc. Rev. 1995, 24, 329–339; g) M. Munakata, L. P. Wu,
T. Kuroda-Sowa, Bull. Chem. Soc. Jpn. 1997, 70, 1727–1743.
[2] a) G. J. Halder, C. J. Kepert, B. Moubaraki, K. S. Murry, J. D.
Cashion, Science 2002, 298, 1762–1765; b) P. J. Hagrman, D.
Hagrman, J. Zubieta, Angew. Chem. Int. Ed. 1999, 38, 2638–
2684; c) A. J. Blake, N. R. Champness, P. Hubberstey, W. S. Li,
M. A. Withersby, M. Schröder, Coord. Chem. Rev. 1999, 183,
117–138; d) B. Moulton, M. J. Zaworotko, Chem. Rev. 2001,
101, 1629–1658; e) O. R. Evans, W. Lin, Acc. Chem. Res. 2002,
35, 511–522; f) E. Lee, J. Heo, K. Kim, Angew. Chem. Int. Ed.
2000, 39, 2699–2701; g) A. Galet, M. C. Munoz, J. A. Real,
J. Am. Chem. Soc. 2003, 125, 14224–14225; h) T. J. Prior, D.
Bradshaw, S. J. Teat, M. J. Rosseinsky, Chem. Commun. 2003,
500–501.
[3] a) S. Kitagawa, R. Kitaura, Comments Inorg. Chem. 2002, 23,
101–126; b) M. L. Tong, B. H. Ye, J. W. Cai, X. M. Chen, S. W.
Ng, Inorg. Chem. 1998, 37, 2645–2650; c) S. S. Y. Chui, S. M. F.
Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science
1999, 283, 1148–1150; d) M. Eddaoudi, H. L. Li, O. M. Yaghi,
J. Am. Chem. Soc. 2000, 122, 1391–1397; e) V. C. Slagt, J. N. H.
Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen, Angew. Chem.
Int. Ed. 2001, 40, 4271–4274; f) D. de Groot, B. F. M. de Waal,
J. N. H. Reek, A. P. H. J. Schenning, P. C. J. Kamer, E. W. Me-
ijer, P. W. N. M. van Leeuwen, J. Am. Chem. Soc. 2001, 123,
8453–8458.
[9]
a) C. L. Ma, Q. F. Zhang, R. F. Zhang, D. Q. Wang, Chem.
Eur. J. 2006, 12, 420–428; b) C. L. Ma, Y. F. Han, R. F. Zhang,
D. Q. Wang, Eur. J. Inorg. Chem. 2005, 3024–3033.
[10]
a) O. Lentzen, C. Moucheron, A. Kirsch-De Mesmaeker,
Metallotherapeutic Drugs and Metal-Based Diagnostic Agents,
Wiley, New York, 2005; b) L. Pellerit, L. Nagy, Coord. Chem.
Rev. 2002, 224, 111–150; c) M. Gielen, Coord. Chem. Rev. 1996,
151, 41–51; d) M. Nath, S. Pokharia, R. Yadav, Coord. Chem.
Rev. 2001, 215, 99–149; e) Tin-Based Antitumor Drugs. NATO
ASI series, vol. H37 (Ed.: M. Gielen), Springer, Berlin, 1990;
f) A. K. Saxena, F. Huber, Coord. Chem. Rev. 1989, 95, 109–
123; g) M. Gielen, Appl. Organomet. Chem. 2002, 16, 481–494.
a) H. V. Aposhian, Ann. Rev. Pharmacol. Toxicol. 1983, 23,
193–215; b) G. Winneke, U. Kramer, Cent. Eur. J. Public Health
1997, 5, 65–69; c) A. Jokstad, Community Dent. Oral Epide-
miol. 1990, 18, 143–148; d) F. Schweinsberg, Toxicol. Lett.
1994, 72, 345–351.
a) J. Singh, A. K. Powell, S. E. M. Clarke, P. J. Blower, J. Chem.
Soc., Chem. Commun. 1991, 1115–1117; b) G. J. Pyrka, N.
Scott, Q. Fernando, Acta Crystallogr., Sect. C 1992, 48, 2007–
2009.
T. A. George, J. Organomet. Chem. 1971, 31, 233–238.
J. R. May, W. R. McWhinnie, R. C. Poller, Spectrochim. Acta
A 1971, 27, 969–974.
K. Chandra, R. K. Sharma, B. S. Garg, R. P. Singh, J. Inorg.
Nucl. Chem. 1980, 42, 187–193.
G. Socrates, Infrared Characteristic Group Frequencies, Wiley-
VCH, Weinheim, 1980.
a) J. Holecˇek, M. Nádvorník, K. Handlírˇ, A. Lycˇka, J. Or-
ganomet. Chem. 1983, 241, 177–184.
P. Álvarez-Boo, J. S. Casas, M. D. Couce, R. Farto, V.
Fernández-Moreira, E. Freijanes, J. Sordo, E. Vázquez-López,
J. Organomet. Chem. 2006, 691, 45–52.
a) P. G. Harrison, K. Lambert, T. J. King, B. Majee, J. Chem.
Soc., Dalton Trans. 1983, 363–369; b) R. G. Swisher, J. F. Vol-
lano, V. Chandrasekhar, R. O. Day, R. R. Holmes, Inorg.
Chem. 1984, 23, 3147–3152.
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[4] a) G. R. Desiraju, Acc. Chem. Res. 2002, 35, 565–573; b) E. A.
Meyer, R. K. Castellano, F. Diederich, Angew. Chem. Int. Ed.
2003, 42, 1210–1250; c) M. Munakata, L. P. Wu, M. Yamam-
oto, T. Kuroda-Sowa, M. Maekawa, J. Am. Chem. Soc. 1996,
118, 3117–3124; d) M. M. Chowdhry, D. M. P. Mingos, A. J. P.
White, D. J. Williams, Chem. Commun. 1996, 899–900; e) S.
Kawata, S. R. Breeze, S. Wang, J. E. Greedan, N. P. Raju,
Chem. Commun. 1997, 717–718; f) A. Neels, B. M. Neels, H.
Stoeckli-Evans, A. Clearfield, D. M. Poojary, Inorg. Chem.
1997, 36, 3402–3409.
[19]
[5] a) G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford
University Press, New York, 1997; b) S. Tsuzuki, K. Honda, T.
Uchimar, M. Mikami, K. Tanabe, J. Am. Chem. Soc. 2000, 122,
Eur. J. Inorg. Chem. 2006, 3244–3254
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjic.org
3253