4078
T. K. Chakraborty et al. / Tetrahedron Letters 48 (2007) 4075–4078
(neat): mmax 2955, 2926, 2855, 1632, 1463, 1253, 1082 cmꢀ1
;
Unfortunately, our attempts to couple the two-halves, 3
and 4 either by exchanging the primary iodo group of 3
with zinc using tBuLi and anhydrous ZnCl2 followed by
coupling with 4 using Pd(Ph3P)4 in THF,16 or reacting
1H NMR (300 MHz, CDCl3): (atom numbering from
right): d 5.57–5.09 (m, 4H, C3–H, C4–H, C7–H, C8–H),
4.26–4.13 (m, 3H, C5–H, C9–H2), 3.13 (dd, J = 9.8,
5.3 Hz, 1H, C1–Ha), 3.02 (dd, J = 9.8, 7.6 Hz, 1H, C1–
Hb), 2.60 (m, 1H, C6–H), 2.44 (m, 1H, C2–H), 1.08 (d,
J = 6.8 Hz, 3H, C–CH3), 0.96 (d, J = 6.8 Hz, 3H, C–
t
the boronate ester derived from 3, using BuLi and 9-
methoxy-9-BBN, with 4 using Pd(dppf)Cl2, aqueous
K3PO4 in DMF2,17 were unsuccessful leaving the total
syntheses of the lycoperdinosides unfinished. Further
work in this direction is in progress.
t
CH3), 0.90–0.88 (two s, 18H, two Bu), 0.06–0.04 (two s,
12H, four Si–CH3); 13C NMR (50 MHz, CDCl3): d 132.7,
132.5, 132.3, 129.9, 72.2, 59.7, 34.4, 31.9, 25.9, 25.8,
21.6, 18.3, 18.1, 16.8, 13.9, ꢀ4.7, ꢀ5.1; HRMS (LSIMS):
Calcd for C23H47O2NaSi2I [M+Na]+: 561.2057. Found:
561.2046.
Acknowledgements
9. (a) Crimmins, M. T.; King, B. W.; Tabet, E. A. J. Am.
Chem. Soc. 1997, 119, 7883–7884; For some earlier leading
references on oxazolidinethione based aldol reactions
giving ‘non-Evans’ syn products see the following review
articles (b) Fujita, E.; Nagao, Y. Adv. Heterocycl. Chem.
1989, 45, 1–36; (c) Mukaiyama, T.; Kobayashi, S. Org.
React. 1994, 46, 1–103.
The authors wish to thank DST, New Delhi, for a Ram-
anna Fellowship (SR/S1/RFOC-06/2006; T.K.C.) and
CSIR, New Delhi, for research fellowships (R.K.G.
and M.S.).
References and notes
10. (a) Chakraborty, T. K.; Dutta, S. J. Chem. Soc., Perkin
Trans. 1 1997, 1257–1259; (b) Chakraborty, T. K.; Das, S.
Tetrahedron Lett. 2002, 43, 2313–2315.
ˇ
´
´
ˇ
1. Rezanka, T.; Dvorˇakova, R.; Hanus, L. O.; Dembitsky, V.
11. (a) Hart, D. W.; Blackburn, T. F.; Schwartz, J. J. Am.
Chem. Soc. 1975, 97, 679–680; (b) Negishi, E.-I. In
Organometallics in Synthesis, 2nd ed.; Schlosser, M., Ed.;
Wiley and Sons, Ltd: Chichester, UK, 2002; p 934; (c)
Panek, J. S.; Hu, T. J. Org. Chem. 1997, 62, 4912–
4913.
M. Eur. J. Org. Chem. 2004, 995–1001.
2. (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron
Lett. 1979, 20, 3437–3440; (b) Miyaura, N.; Suzuki, A. J.
Chem. Soc., Chem. Commun. 1979, 866–867; For reviews
see (c) Suzuki, A. Acc. Chem. Res. 1982, 15, 178–184; (d)
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483;
(e) Suzuki, A. Chem. Commun. 2005, 4759–4763; (f)
Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem.,
Int. Ed. 2005, 44, 4442–4489.
12. (a) Zhang, H.-X.; Guibe, F.; Balavoine, G. J. Org. Chem.
´ ´
1990, 55, 1857–1867; (b) Benechie, M.; Skrydstrup, T.;
Khuong-Huu, F. Tetrahedron Lett. 1991, 32, 7535–7538.
13. Marshall, J. A.; Bourbeau, M. P. Org. Lett. 2002, 4, 3931–
3934.
3. Marshall, J. A.; Bourbeau, M. P. J. Org. Chem. 2002, 67,
2751–2754.
14. (a) Miyake, H.; Yamakura, K. Chem. Lett. 1989, 981–984;
(b) Rice, M. B.; Whitehead, S. L.; Horvath, C. M.;
Muchnij, J. A.; Maleczka, R. E. Synthesis 2001, 1495–
1504.
4. To prove the stereochemistry of the adduct, compound 10
was transformed into acetonide 36. The 3J value of the
propargylic proton, „–CH(O–), in 36 was 10.4 Hz,
confirming a diaxial relationship with its vicinal proton
and proving the assigned stereochemistry
15. Selected physical data for 4: Rf = 0.63 (silica gel, 10%
EtOAc in petroleum ether); ½aꢁ2D8 +6.51 (c 0.22, CHCl3); IR
(neat): mmax 2924, 2853, 1461, 1253 cmꢀ1 1H NMR
;
1. TBAF, THF, 0 oC to rt, 4 h
O
(200 MHz, CDCl3): (atom numbering from left): d 7.32–
7.28 (m, 5H, ArH), 6.58 (s, 1H, C3–H), 5.31 (t, J = 6.5 Hz,
1H, C5–H), 4.48 (s, 2H, PhCH2O–), 3.86 (m, 1H, C7–H),
3.53 (dd, J = 7.3, 1.4 Hz, 1H, C9–H), 3.43 (t, J = 6.0 Hz,
2H, C13–H2), 2.53 (d, J = 1.4 Hz, 3H, C2–CH3), 2.25 (m,
2H, C6–H2), 1.70 (s, 3H, C4–CH3), 1.66–1.49 (m, 6H, C8–
O
10
2. 2,2-DMP, CSA, CH2Cl2, 0 oC
to rt, 0.5 h (74% in two steps)
36
OH
t
5. Chakraborty, T. K.; Reddy, V. R.; Reddy, T. J. Tetra-
hedron 2003, 59, 8613–8622.
6. Brown, C. A.; Ahuja, V. K. J. Org. Chem. 1973, 38, 2226–
2230.
H, C10–H, C11–H2, C12–H2), 0.93–0.79 (m, 24H, two Bu,
C8–CH3, C10–CH3), 0.07–0.03 (three s, 12H, four Si–CH3);
HRMS (LSIMS): Calcd for C35H63O3NaSi2I [M+Na]+:
737.3258. Found: 737.3260.
7. Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405–
4408.
16. Smith, A. B., III; Qiu, Y.; Jones, D. R.; Kobayashi, K.
J. Am. Chem. Soc. 1995, 117, 12011–12012.
17. Marshall, J. A.; Johns, B. A. J. Org. Chem. 1998, 63,
7885–7892.
8. Selected physical data for 3: Rf = 0.60 (silica gel, 4%
EtOAc in petroleum ether); ½aꢁ2D8 +14.8 (c 0.71, CHCl3); IR