Scheme 1. Asymmetric Synthesis of 6-Alkyl- and 6-Arylpiperidin-2-ones 7a-e
particularly piperidine alkaloids. The subsequent introduction
but varying degrees of success have been claimed with regard
to their enantioselectivities. Except for some catalyst based
synthesis of these lactams10 most convenient strategies
involve the intramolecular cyclization of enantioenriched
â-keto,11 saturated,9,12 or unsaturated13 δ-aminoesters and
some of the corresponding azido derivatives.14 These highly
functionalized precursors are usually equipped with chiral
auxiliaries derived from the natural chiral pool or with tailor-
made stereocontrolling agents. They also have been obtained
by reductive opening of diastereochemically pure oxazolo-
piperidones15 or via an asymmetric amidoalkylation involving
interception of variously generated chiral iminium salts with
silyl derivatives16 or cyanocuprates.5c,17 On the other hand,
studies on the corresponding R,â- or γ,δ-unsaturated δ-lac-
tams are scarce and most of the chiral 6-substituted models
have been assembled from the corresponding saturated
lactams18 by a multistep sequence involving metalation/
electrophilic capture with phenylselenyl bromide/oxidation
reactions followed by an ultimate elimination reaction.
We now report combinations of a highly diastereoselective
nucleophilic 1,2-addition on chiral aliphatic and aromatic
of substituents on the carbon atoms of the piperidine ring
may indeed be achieved by R-amidoalkylation, enolate or
homoenolate alkylations, manipulation of the amide carbonyl
group, and functionalization of the olefinic moiety including
but not limited to epoxydation or dihydroxylation.5 The
substituted piperidin-2-ones are also substructural units of
barbiturates and glutarimides6 and are key intermediates for
the synthesis of aminopentanoic acids.7 Thus the development
of chiral nonracemic piperidinone building blocks with the
final aim of synthesizing enantiopure piperidine derivatives
still constitutes an area of current interest and alternative
methods are currently the object of intensive synthetic
endeavors.
Herein we wish to report the use of chiral cyclic ene-
hydrazides as substrates for catalytic hydrogenation, which
provides a new efficient and general route to optically active
6-alkyl- and 6-arylpiperidin-2-ones. The utility of this method
has been emphasized by the synthesis of the poisonous
hemlock alkaloid (S)-(+)-coniine.8 Organic chemists have
at their disposal a variety of synthetic strategies for the
asymmetric synthesis of 6-substituted piperidin-2-ones9-17
(13) (a) Davies, S. B.; McKervey, M. A. Tetrahedron Lett. 1999, 40,
1229-1232. (b) Kawecki, R. Tetrahedron 2001, 57, 8385-8390. (c) Burke,
A. J.; Davies, S. G.; Garner, A. C.; McCarthy, T. D.; Roberts, P. M.; Smith,
A. D.; Rodriguez-Solla, H.; Vickers, R. J. Org. Biomol. Chem. 2004, 2,
1387-1394.
(5) (a) Amat, M.; Llor, N.; Huguet, M.; Molins, E.; Espinosa, E.; Bosch,
J. Org. Lett. 2001, 3, 3257-3260. (b) Senda, T.; Ogasawara, M.; Hayashi,
T. J. Org. Chem. 2001, 66, 6852-6856. (c) Amat, M.; Llor, N.; Hidalgo,
J.; Escolano, C.; Bosch, J. J. Org. Chem. 2003, 68, 1919-1928. (d)
Elworthy, T. R.; Brill, E. R.; Caires, C. C.; Kim, W.; Lach, L. K.; Tracy,
J. L.; Chiou, S.-S. Bioorg. Med. Chem. Lett. 2005, 15, 2523-2526.
(6) Laycock, G. M.; Shulman, A. Nature 1963, 200, 849-851.
(7) Meyers, C. Y.; Miller, L. E. Org. Synth. 1963, 32, 13-17.
(8) For a recent review on coniine and hemlock alkaloids, see: Reynolds,
T. Phytochemistry 2005, 66, 1399-1406.
(14) (a) Masaki, Y.; Imaeda, T.; Nagata, K.; Oda, H.; Ito, A. Tetrahedron
Lett. 1989, 30, 6395-6396. (b) Hodgkinson, T. J.; Shipman, M. Synthesis
1998, 1141-1144.
(15) (a) Munchhof, M. J.; Meyers, A. I. J. Org. Chem. 1995, 60, 7084-
7085. (b) Freville, S.; Celerier, J.-P.; Thuy, V. M.; Lhommet, G.
Tetrahedron: Asymmetry 1995, 6, 2651-2654.
(9) Enders, D.; Bartzen, D. Liebigs Ann. Chem. 1997, 1115-1123.
(10) (a) Reding, M. T.; Buchwald, S. L. J. Org. Chem. 1998, 63, 6344-
6347. (b) Wilkinson, T. J.; Stehle, N. W.; Beak, P. Org. Lett. 2000, 2, 155-
158.
(11) Davis, F. A.; Chao, B.; Fang, T.; Szewczyk, J. M. Org. Lett. 2000,
2, 1041-1043.
(12) (a) Huang, S. B.; Nelson, J. S.; Weller, D. D. Synth. Commun. 1989,
19, 3485-3496. (b) McIntosh, J. M.; Acquaah, S. O. Can. J. Chem. 1988,
66, 1752-1756. (c) Davis, F. A.; Szewczyk, J. M. Tetrahedron Lett. 1998,
39, 5951-5954. (d) Josephshon, N. S.; Snapper, M. L.; Hoveyda, A. H. J.
Am. Chem. Soc. 2004, 126, 3734-3735. (e) Bates, R. W.; Boonsombat, J.
Org. Biomol. Chem. 2005, 3, 520-523. (f) Enders, D.; Tiebes, J. Liebigs
Ann. Chem. 1993, 173-177.
(16) (a) Polniaszek, R. P.; Belmont, S. E.; Alvarez, R. J. Org. Chem.
1990, 55, 215-223. (b) Amat, M.; Llor, N.; Bosch, J. Tetrahedron Lett.
1994, 35, 2223-2226. (c) Suzuki, H.; Aoyagi, S.; Kibayashi, C. J. Org.
Chem. 1995, 60, 6114-6122.
(17) (a) Amat, M.; Llor, N.; Hidalgo, J.; Hernandez, A.; Bosch, J.
Tetrahedron: Asymmetry 1996, 7, 977-980. (b) Teran, J. L.; Gnecco, D.;
Galindo, A.; Juarez, J.; Berne`s, S.; Enriquez, R. G. Tetrahedron: Asymmetry
2001, 12, 357-360.
(18) (a) Varea, T.; Dufour, M.; Micouin, L.; Riche, C.; Chiaroni, A.;
Quirion, J.-C.; Husson, H.-P. Tetrahedron Lett. 1995, 36, 1035-1038. (b)
Hanessian, S.; Seid, M.; Nilsson, I. Tetrahedron Lett. 2002, 43, 1991-
1994. (c) Coe, D.; Drysdale, M.; Philps, O.; West, R.; Young, D. W. J.
Chem. Soc., Perkin Trans. 1 2002, 2459-2472.
2474
Org. Lett., Vol. 9, No. 13, 2007