assembly. A nice example is8a the switchable [2]catenane
2‚4PF6 (Scheme 1). By differentiating the two π-donors on
the crown ether macrocycle, precise translational selectivity
was achieved to give a nearly “all-or-nothing” situation.
Another way to implement control over the translational
isomerism is to include two different π-accepting units.
Neutral π-deficient units, such as pyromellitic diimide (PmI)
and naphtho-diimide (NpI), have been used13 as π-acceptors
in [2]catenane synthesis. The considerably different π-ac-
cepting ability between PmI and BPy units13d,14 prompts us
to designate desymmetrized [2]catenanes incorporating these
components. Here we report (1) the templated syntheses of
two such [2]catenanes that (2) exist as a single translational
isomer as expressed in the form of a preference for crown
ether component to encircle the BPy unit in both solution
and solid states.
Scheme 1. Introducing Translational Isomerism by Varying
the Donors or Acceptors in the [2]Catenane 1‚4PF6
and molecular switches8 of such kinds have found many
applications, including molecular memories,9 nanovalves,10
and molecular muscles.11
Scheme 2. Synthesis of Two [2]Catenanes and the Related
Translational Isomerism
Desymmetrized [2]catenanes12 serve as a role model of
controllable molecular motors.7d Efficient rotary movements
can be implemented only if precise control of translational
isomerism is achieved. The synthesis of such compounds
remains challenging as it requires the selection of the right
recognition pairs with different strength and their proper
(8) (a) Asakawa, M.; Ashton, P. R.; Balzani, V.; Credi, A.; Hamers, C.;
Mattersteig, G.; Montalti, M.; Shipway, A. N.; Spencer, N.; Stoddart, J. F.;
Tolley, M. S.; Venturi, M.; White, A. J. P.; Williams, D. J. Angew. Chem.,
Int. Ed. 1998, 37, 333-337. (b) Tseng, H.-R.; Vignon, S. A.; Stoddart, J.
F. Angew. Chem., Int. Ed. 2003, 43, 1491-1495. (c) Flood, A. H.; Stoddart,
J. F.; Steuerman, D. W.; Heath, J. R. Science 2004, 306, 2055-2056. (d)
de Jong, J. J. D.; Lucas, L. N.; Kellogg, R. M.; van Esch, J. H.; Feringa, B.
L. Science 2004, 304, 278-281. (e) Leigh, D. A.; Morales, M. A. F.; Perez,
E. M.; Wong, J. K. Y.; Saiz, C. G.; Slawin, A. M. Z.; Carmichael, A. J.;
Haddleton, D. M.; Brouwer, A. M.; Buma, W. J.; Wurpel, G. W. H.; Leon,
S.; Zerbetto, F. Angew. Chem., Int. Ed. 2005, 44, 3062-3067. (f) Serreli,
V.; Lee, C.-F.; Kay, E. R.; Leigh, D. A. Nature 2007, 445, 523-527.
(9) (a) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly,
K.; Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science 2000,
289, 1172-1175. (b) Luo, Y.; Collier, C. P.; Jeppesen, J. O.; Nielsen, K.
A.; DeIonno, E.; Ho, G.; Perkins, J.; Tseng, H.-R.; Yamamoto, T.; Stoddart,
J. F.; Heath, J. R. ChemPhysChem 2002, 3, 519-525. (c) Flood, A. H.;
Stoddart, J. F.; Steuerman, D. W.; Heath, J. F. Science 2004, 306, 2055-
2056. (d) Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.; Johnston-
Halperin, E.; DeIonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.;
Tseng, H.-R.; Stoddart, J. F.; Heath, J. R. Nature 2007, 445, 414-417.
(10) (a) Nguyen, T. D.; Tseng, H.-R.; Celestre, P. C.; Flood, A. H.; Liu,
Y.; Zink, J. I.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A. 2005, 102,
10029-10034. (b) Nguyen, T. D.; Liu, Y.; Saha, S.; Leung, K. C.-F.;
Stoddart, J. F.; Zink, J. I. J. Am. Chem. Soc. 2007, 129, 626-634.
(11) (a) Huang, T. J.; Brough, B.; Ho, C.-M.; Liu, Y.; Flood, A. H.;
Bonvallet, P. A.; Vignon, S. A.; Tseng, H.-R.; Stoddart, J. F.; Baller, M.;
Magonov, S. Appl. Phys. Lett. 2004, 85, 5391-5393. (b) Liu, Y.; Flood,
A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop, B. H.; Tseng, H.-R.;
Jeppesen, J. O.; Huang, T. J.; Brough, B.; Baller, M.; Magonov, S.; Solares,
S. D.; Goddard, W. A.; Ho, C.-M.; Stoddart, J. F. J. Am. Chem. Soc. 2005,
127, 9745-9759.
The synthesis (Scheme 2) was first attempted by reacting
a PmI containing dibromide 3, 4,4′-bipyridine (4), and a
hydroquinone (HQ) containing crown ether, bis-p-phenylene-
[34]crown-10 (BPP34C10), in DMF for 3 days. Although
no noticeable color change occurred upon mixing the
dibromide 3 and BPP34C10 owing to weak donor-acceptor
interactions, a red color gradually developed overnight,
suggesting the formation of bipyridium and its inclusion in
the BPP34C10 cavity. After counterion exchange with an
acetone/NH4PF6 mixture, the [2]catenane 5‚2PF6 was isolated
as a red solid in 30% yield. Similarly, when the more
(13) (a) Hamilton, D. G.; Davies, J. E.; Prodi, L.; Sanders, J. K. M. Chem.
Eur. J. 1998, 4, 608-617. (b) Hamilton, D. G.; Montalti, M.; Prodi, L.;
Fontani, M.; Zanello, P.; Sanders, J. K. M. Chem. Eur. J. 2000, 6, 608-
617. (c) Hansen, J. G.; Feeder, N.; Hamilton, D. G.; Gunter, M. J.; Becher,
J.; Sanders, J. K. M. Org. Lett. 2000, 2, 449-452. (d) Kaiser, G.; Jarrosson,
T.; Otto, S.; Ng, Y.-F.; Bond, A. D.; Sanders, J. K. M. Angew. Chem., Int.
Ed. 2004, 43, 1959-1962. (e) Vignon, S. A.; Jarrosson, T.; Iijima, T.; Tseng,
H.-R.; Sanders, J. K. M.; Stoddart, J. F. J. Am. Chem. Soc. 2004, 126, 9884-
9885. (f) Iijima, T.; Vignon, S. A.; Tseng, H.-R.; Jarrosson, T.; Sanders, J.
K. M.; Marchioni, F.; Venturi, M.; Apostoli, E.; Balzani, V.; Stoddart, J.
F. Chem. Eur. J. 2004, 10, 6375-6392.
(12) For examples of desymmetrized [2]catenanes with various degrees
of control on translational selectivity, see: (a) Ashton, P. R.; Perez-Garcia,
L.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed.
Engl. 1995, 34, 571-574. (b) Baumann, F.; Livoreil, A.; Kaim, W.;
Sauvage, J.-P. Chem. Commun. 1997, 35-36. (c) Balzani, V.; Credi, A.;
Langford, S. J.; Raymo, F. M.; Stoddart, J. F.; Venturi, M. J. Am. Chem.
Soc. 2000, 122, 3542-3543. (d) Tseng, H.-R.; Vignon, S. A.; Celestre, P.
C.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Chem. Eur. J. 2003, 9,
543-556. (e) Hernandez, J. V.; Kay, E. R.; Leigh, D. A. Science 2004,
306, 1532-1537.
(14) Credi, A.; Montalti, M.; Balzani, V.; Langford, S. J.; Raymo, F.
M.; Stoddart, J. F. New J. Chem. 1998, 22, 1061-1065.
2578
Org. Lett., Vol. 9, No. 13, 2007