RSC Advances
Paper
Thermo-Nicolet instrument from a thin transparent KBr pellet.
The XRD patterns of the sample was recorded on a Philips PW-
1710 X-ray diffractometer (40 kV, 20 mA) using Cu Ka radiation
1j. dH (400 MHz; acetone-d6): 3.62 (6H, s, –OMe), 5.82 (1H, s,
–CH), 6.68–6.74 (2H, m), 6.81–6.83 (4H, m), 7.25–7.29 (4H, m),
7.40 (2H, d, J ¼ 8.4 Hz), 9.84 (2H, s, –NH). dC (100 MHz, acetone-
d6): 40.4, 54.9, 101.6, 111.1, 111.8, 118.6, 124.4, 125.8, 127.6,
127.9, 128.7, 132.4, 145.1, 153.5.
ꢀ
˚
(k ¼ 1.5418 A) in the 2q range of 10–90 at a scanning rate of
0.5ꢀ minꢁ1. The XRD data were analyzed using JCPDS soware.
Surface morphology of all the samples were recorded by using a
scanning electron microscope (JEOL JSM5800) with an acceler-
ated voltage 5–20 kV. TEM images were acquired using JEOL
JEM-2010 microscopes with an operating voltage of 200 kV.
Conclusions
In summary, iron(oxalate) capped Fe(0) nanoparticle was
synthesized using a facile approach. The aerial oxidation of
Fe(0) leads to iron(oxalate) capped Fe3O4 nano material, which
is found to be useful as a magnetically recoverable catalyst for
the selective synthesis of bis(indolyl)methanes from the
condensation between aldehydes and indoles in water. In terms
of environmental compatibility, reusability, operational
simplicity, the magnetic iron(oxalate) capped Fe3O4 nano-
particles were very simple, effective and economical. The as-
prepared Fe(ox)–Fe3O4 nanomaterials also shows an excellent
ability as a recyclable catalyst for the degradation of methylene
blue (MB) under UV irradiation and are expected to be useful in
many other applications.
NMR data of bis(indolyl) methanes
1a. dH (400 MHz; acetone-d6) 5.89 (1H, s, –CH), 6.78 (2H, s),
6.86 (2H, t, J ¼ 8.0 Hz), 7.03 (2H, t, J ¼ 8.0 Hz), 7.15 (1H, t, J ¼ 7.6
Hz), 7.24 (2H, t, J ¼ 7.6 Hz), 7.31–7.38 (6H, m), 9.97 (2H, s, –NH).
dC (100 MHz, Acetone-d6) 40.3, 111.3, 118.5, 119.0, 119.4, 121.2,
123.7, 125.8, 127.2, 128.0, 128.7, 137.3, 145.1.
1b. dH (400 MHz; acetone-d6): 2.25 (3H, s, –CH3) 5.83 (1H, s,
–CH), 6.76 (2H, s), 6.85 (2H, t, J ¼ 7.6 Hz), 7.00–7.05 (4H, m),
7.24 (2H, d, J ¼ 8.2 Hz), 7.30–7.36 (4H, m), 9.97 (2H, s, –NH). dC
(100 MHz, acetone-d6) 28.4, 39.9, 111.3, 118.4, 119.2, 119.5,
121.2, 123.7, 127.3, 128.6, 128.6, 135.0, 137.3, 142.1.
1c. dH (400 MHz; DMSO-d6): 5.79 (1H, s, –CH), 6.79–6.83 (4H,
m), 7.00 (2H, t, J ¼ 8.0 Hz), 7.22–7.32 (6H, m), 7.40 (2H, d, J ¼ 8.0
Hz), 10.4 (2H, s, –NH). dC (100 MHz, DMSO-d6) 40.0, 112.0,
118.0, 118.8, 119.3, 119.5, 121.5, 124.1, 127.0, 131.0, 131.4,
137.1, 144.9.
1d. dH (400 MHz; acetone-d6): 6.07 (1H, s, –CH), 6.86–6.91
(4H, m), 7.06 (2H, t, J ¼ 7.2 Hz), 7.32 (2H, d, J ¼ 7.6 Hz), 7.38 (2H,
d, J ¼ 7.6 Hz), 7.62 (2H, s), 8.12 (2H, d, J ¼ 8.4 Hz), 10.1 (2H, s,
–NH). dC (100 MHz, acetone-d6) 40.1, 111.5, 117.6, 118.8, 119.2,
121.5, 123.3, 124.0, 126.9, 129.7, 137.3, 146.5, 153.1.
1e. dH (400 MHz; acetone-d6): 3.60 (6H, s, –OMe), 5.80 (1H, s,
–CH), 6.72 (2H, s), 6.79 (4H, s), 7.24–7.32 (4H, m), 7.41 (2H, d, J
¼ 7.0 Hz), 9.86 (2H, s, –NH). dC (100 MHz, acetone-d6) 39.7, 54.9,
101.5, 111.3, 112.0, 118.0, 119.1, 124.5, 127.5, 130.8, 131.0,
132.4, 144.6, 153.6.
1f. dH (400 MHz; acetone-d6): 6.48 (1H, s, –CH), 7.20 (2H, s),
7.59 (2H, d, J ¼ 9.2 Hz), 7.72 (2H, d, J ¼ 8.8 Hz), 8.0 (2H, d, J ¼
9.2 Hz), 8.20 (2H, d, J ¼ 8.8 Hz), 8.36 (2H, s), 10.93 (2H, s, –NH).
dC (100 MHz, acetone-d6): 39.1, 112.0, 116.2, 117.1, 119.9, 123.7,
126.1, 127.9, 129.7, 140.3, 141.4, 146.9, 151.5.
1g. dH (400 MHz; acetone-d6): 6.12 (1H, s, –CH), 6.93 (2H, s),
7.19 (2H, d, J ¼ 8.8 Hz), 7.37 (2H, d, J ¼ 8.4 Hz), 7.50 (2H, s), 7.64
(2H, d, J ¼ 8.4 Hz), 8.17 (2H, d, J ¼ 8.4 Hz), 10.33 (2H, s, –NH). dC
(100 MHz, acetone-d6): 39.5, 111.8, 113.5, 117.1, 121.5, 123.5,
124.3, 125.7, 128.7, 129.6, 135.9, 146.7, 152.2.
1h. dH (400 MHz; acetone-d6): 2.25 (3H, s, –CH3), 3.59 (6H, s,
–OMe), 5.76 (1H, s, –CH), 6.66–6.72 (2H, m), 6.77–6.81 (4H, m),
7.08 (2H, d, J ¼ 7.6 Hz), 7.23–7.25 (4H, m), 9.81 (2H, s, –NH). dC
(100 MHz, acetone-d6): 20.0, 39.9, 54.9, 101.8, 111.0, 111.8,
118.8, 124.4, 124.4, 127.7, 128.6, 132.4, 134.9, 142.1, 153.3.
1i. dH (400 MHz; acetone-d6): 2.26 (3H, s, –CH3), 6.16 (1H, s,
–CH), 7.09–7.13 (5H, m), 7.30 (2H, d, J ¼ 8.4 Hz), 7.98 (2H, d, J ¼
8.8 Hz), 8.33 (2H, s), 10.81 (2H, s, –NH). dC (100 MHz, acetone-
d6): 20.1, 39.1, 111.8, 116.4, 116.8, 121.3, 126.3, 127.5, 128.4,
129.1, 135.9, 140.3, 140.6, 141.1.
Acknowledgements
Financial support of this work by DST-New Delhi (to SP for
INSPIRE research grant) is gratefully acknowledged. SP fondly
dedicate this work to Prof. M. K. Chaudhuri on the occasion of
his 66th birthday. SP is also thankful to Anu for her constant
help and support.
Notes and references
1 (a) C. J. Jia and L. Sun, J. Am. Chem. Soc., 2008, 130, 16968; (b)
X. Battle and A. Labarta, J. Phys. D: Appl. Phys., 2002, 35, R15;
(c) R. H. Kodama, J. Magn. Magn. Mater., 1999, 200, 359; (d)
B. D. Cullity, Introduction to Magnetic Materials, Addison-
Wesley, Reading, MA, 1972.
2 (a) S. Wu, Q. He, C. Zhou, X. Qi, X. Huang, Z. Yin, Y. Yang
and H. Zhang, Nanoscale, 2012, 4, 2478; (b) S. Sun and
H. Zeng, J. Am. Chem. Soc., 2002, 124, 8204; (c)
A. H. Latham and M. E. Williams, Acc. Chem. Res., 2008,
41, 411; (d) S. Laurent, D. Forge, M. Port, A. Roch,
C. Robic, L. V. Elst and R. N. Muller, Chem. Rev., 2008,
108, 2064.
3 (a) V. Polshettiwar, B. Baruwati and R. S. Varma, Green
Chem., 2009, 11, 127; (b) A. Hu, G. T. Yee and W. Lin, J.
Am. Chem. Soc., 2005, 127, 12486.
4 (a) R. Psaro, A. Fusi, R. Ugo, J. M. Basset, A. K. Smith and
F. Hugues, J. Mol. Catal., 1980, 7, 511; (b) M. V. Kovalenko,
M. I. Bodnarchuk, R. T. Lechner, G. Hesser, F. Schaffler
and W. Heiss, J. Am. Chem. Soc., 2007, 129, 6352; (c)
X. W. Teng and H. Yang, J. Mater. Chem., 2004, 14, 774; (d)
J. E. Macdonald, C. J. Brooks and J. G. C. Veinot, Chem.
Commun., 2008, 3777.
5 M. Hermanek, R. Zboril, I. Medrik, J. Pechousek and
C. Gregor, J. Am. Chem. Soc., 2006, 128, 1675–1682.
33454 | RSC Adv., 2014, 4, 33446–33456
This journal is © The Royal Society of Chemistry 2014