10.1002/anie.201903877
Angewandte Chemie International Edition
COMMUNICATION
fluorescence signal compared to control fish implanted with
unmodified beads (5.5 fold, t = 4 h; Fig. 5b, 5c). Furthermore,
compared to previously disclosed Tz-beads modified with
MeTzCOOH,[10] a in vivo resorufin release was faster with 3a-
modified beads (Fig. S16).
reactivity and orthogonality. This versatile chemistry may open
doors to diverse applications in chemical biology and therapeutics.
Acknowledgements
R.M.F. gratefully acknowledges financial support from the
University of Utah, the Huntsman Cancer Institute, and the
USTAR initiative. This work was supported by the L. S. Skaggs
Presidential Endowed Chair (R.T.P.). We thank Ethan Lamé
(Juan Diego High School) and Tejita Agarwal (West High School)
for assistance in the early stages of this project. D.S gratefully
acknowledges financial support from the Austrian Science Fund
(FWF, J 4216-N28). K.N.H gratefully acknowledges financial
support from the National Institute of General Medical Sciences,
National Institutes of Health, GM-109078.
Keywords: Bioorthogonal chemistry
•
Cycloadditions
•
Dispersion forces • Chemoselectivity • Bioconjugation
[1]
a) C. S. McKay, M. G. Finn, Chem. Biol. 2014, 21, 1075-1101; b) T. Carell,
M. Vrabel, Top Curr Chem (Cham) 2016, 374, 9.
[2]
[3]
X. Chen, Y. W. Wu, Org. Biomol. Chem. 2016, 14, 5417-5439.
G. Zhang, J. Li, R. Xie, X. Fan, Y. Liu, S. Zheng, Y. Ge, P. R. Chen, ACS
Cent Sci 2016, 2, 325-331.
[4]
a) K. Neumann, A. Gambardella, M. Bradley, Chembiochem 2018, 0; b)
J. Tu, M. Xu, R. Franzini, ChemBioChem 2019; c) X. Ji, Z. Pan, B. Yu, L.
K. De La Cruz, Y. Zheng, B. Ke, B. Wang, Chem. Soc. Rev. 2019, 48,
1077-1094.
[5]
a) F. L. Lin, H. M. Hoyt, H. Van Halbeek, R. G. Bergman, C. R. Bertozzi,
Journal of the American Chemical Society 2005, 127, 2686-2695; b) N.
K. Devaraj, R. Weissleder, S. A. Hilderbrand, Bioconjugate Chemistry
2008, 19, 2297-2299; c) M. L. Blackman, M. Royzen, J. M. Fox, 2008,
13518-13519; d) J. C. Jewett, C. R. Bertozzi, Chemical Society reviews
2010, 39, 1272-1279; e) M. F. Debets, S. S. van Berkel, J. Dommerholt,
A. T. Dirks, F. P. Rutjes, F. L. van Delft, Acc Chem Res 2011, 44, 805-
815; f) J. Yang, J. Seckute, C. M. Cole, N. K. Devaraj, Angew. Chem.,
Int. Ed. Engl. 2012, 51, 7476-7479; g) D. M. Patterson, L. A. Nazarova,
B. Xie, D. N. Kamber, J. A. Prescher, Journal of the American Chemical
Society 2012, 134, 18638-18643; h) M. Vrabel, P. Kolle, K. M. Brunner,
M. J. Gattner, V. Lopez-Carrillo, R. de Vivie-Riedle, T. Carell, Chemistry
2013, 19, 13309-13312; i) K. Peewasan, H. A. Wagenknecht,
ChemBioChem 2017, 18, 1473-1476; j) H. Gu, T. I. Chio, Z. Lei, R. J.
Staples, J. S. Hirschi, S. Bane, Org. Biomol. Chem. 2017, 15, 7543-7548;
k) S. J. Siegl, M. Vrabel, Eur. J. Org. Chem. 2018, 2018, 5081-5085; l) J.
Yang, Y. Liang, J. Seckute, K. N. Houk, N. K. Devaraj, Chemistry 2014,
20, 3365-3375.
Figure 5. Demonstration of in-vivo use of isonitrile/tetrazine chemistry. A)
Schematic for the release of fluorescent resorufin in zebrafish implanted with a
tetrazine-modified resin. B) Efficient turn-on of fluorescence signal. C)
Quantification of fluorescence turn-on in the presence of Tz-PS versus
unmodified beads over time.
In conclusion, we discovered an atypical structure-activity
relationship for the reaction of tetrazines and isonitriles.
Computational studies revealed that dispersion forces between
the isocyano group and the tetrazine substituents in the
cycloaddition transition state primarily caused this trend. This
effect made it possible to design 3-tert-butyl-6-pyrimidine-
tetrazines that react rapidly with isonitriles and are stable under
simulated physiological conditions. Sterically encumbered
tetrazines further react preferentially with isonitriles over strained
alkenes/alkynes, which enabled the triple-orthogonal labeling of
proteins. Considering the structural compactness and ease of
synthesis of isonitriles, the developed tetrazines will be valuable
for bioorthogonal conjugation and release applications.
Importantly, the discovered basic principles lay a foundation
towards the development of tetrazines with further enhanced
[6]
a) R. M. Versteegen, R. Rossin, W. ten Hoeve, H. M. Janssen, M. S.
Robillard, Angew. Chem., Int. Ed. Engl. 2013, 52, 14112-14116; b) S. S.
Matikonda, D. L. Orsi, V. Staudacher, I. A. Jenkins, F. Fiedler, J. Chen,
A. B. Gamble, Chem. Sci. 2015, 6, 1212-1218; c) M. Xu, J. Tu, R. M.
Franzini, Chem. Commun. 2017, 53, 6271-6274; d) Y. Zheng, X. Ji, B.
Yu, K. Ji, D. Gallo, E. Csizmadia, M. Zhu, M. R. Choudhury, L. K. C. De
La Cruz, V. Chittavong, Z. Pan, Z. Yuan, L. E. Otterbein, B. Wang, Nat
Chem 2018.
[7]
a) H. Wu, N. K. Devaraj, Top Curr Chem (Cham) 2016, 374, 3; b) B. L.
Oliveira, Z. Guo, G. J. L. Bernardes, Chem. Soc. Rev. 2017, 46, 4895-
4950.
[8]
[9]
a) D. M. Patterson, J. A. Prescher, Curr. Opin. Chem. Biol. 2015, 28, 141-
149; b) R. D. Row, J. A. Prescher, Acc. Chem. Res. 2018, 51, 1073-1081.
a) H. Stockmann, A. A. Neves, S. Stairs, K. M. Brindle, F. J. Leeper, Org.
Biomol. Chem. 2011, 9, 7303-7305; b) Y. A. Wainman, A. A. Neves, S.
This article is protected by copyright. All rights reserved.