Angewandte
Chemie
[1] F. Diederich, P. J. Stang, Metal-Catalyzed Cross-Coupling Reac-
tions, Wiley-VCH, Weinheim, 1998.
[2] For asymmetric cross-coupling reactions, see: T. Hayashi, J.
Organomet. Chem. 2002, 653, 41, and references therein.
[3] Use of: acid chlorides: a) M. Kosugi, Y. Shimizu, T. Migita,
Chem. Lett. 1977, 6, 1423; b) D. Milstein, J. K. Stille, J. Am.
Chem. Soc. 1978, 100, 3636; c) D. Milstein, J. K. Stille, J. Org.
Chem. 1979, 44, 1613; thioesters: d) H. Tokuyama, S. Yokosh-
ima, T. Yamashita, T. Fukuyama, Tetrahedron Lett. 1998, 39,
3189; e) L. S. Liebeskind, J. Srogl, J. Am. Chem. Soc. 2000, 122,
11260; f) R. Wittenberg, J. Srogl, M. Egi, L. S. Liebeskind, Org.
Lett. 2003, 5, 3033; aryl trifluoroacetates: g) R. Kakino, I.
Shimizu, A. Yamamoto, Bull. Chem. Soc. Jpn. 2001, 74, 371; acyl
cyanides: h) C. Duplais, F. Bures, I. Sapountzis, T. J. Korn, G.
Cahiez, P. Knochel, Angew. Chem. 2004, 116, 3028; Angew.
Chem. Int. Ed. 2004, 43, 2968; acid fluorides: i) Y. Zhang, T.
Rovis, J. Am. Chem. Soc. 2004, 126, 15964.
[4] a) S. D. Real, D. R. Kronenthal, H. Y. Wu, Tetrahedron Lett.
1993, 34, 8063; b) L. J. Goossen, K. Ghosh, Angew. Chem. 2001,
113, 3566; Angew. Chem. Int. Ed. 2001, 40, 3458; c) C. G. Frost,
K. J. Wadsworth, Chem. Commun. 2001, 2316; d) R. Shintani,
G. C. Fu, Angew. Chem. 2002, 114, 1099; Angew. Chem. Int. Ed.
2002, 41, 1057; e) R. Kakino, S. Yasumi, I. Shimizu, A.
Yamamoto, Bull. Chem. Soc. Jpn. 2002, 75, 137; f) D. Wang, Z.
Zhang, Org. Lett. 2003, 5, 4645; g) Y.-T. Hong, A. Barchuk, M. J.
Krische, Angew. Chem. 2006, 118, 7039; Angew. Chem. Int. Ed.
2006, 45, 6885.
Scheme 4. Synthesis of 3-epi-eupomatilone 6. Tol=toluene.
[5] a) E. A. Bercot, T. Rovis, J. Am. Chem. Soc. 2002, 124, 174;
b) E. A. Bercot, T. Rovis, J. Am. Chem. Soc. 2005, 127, 247;
c) J. B. Johnson, R. T. Yu, P. Fink, E. A. Bercot, T. Rovis, Org.
Lett. 2006, 8, 4307; d) J. B. Johnson, E. A. Bercot, J. M. Rowley,
G. W. Coates, T. Rovis, J. Am. Chem. Soc. 2007, 129, 2718.
[6] E. A. Bercot, T. Rovis, J. Am. Chem. Soc. 2004, 126, 10248.
[7] For a recent solution to this problem in the addition of diarylzinc
reagents to aldehydes, see: J. G. Kim, P. J. Walsh, Angew. Chem.
2006, 118, 4281; Angew. Chem. Int. Ed. 2006, 45, 4175.
[8] Control experiments revealed that the presence of LiX led to
drastically lower enantioselectivity even with Ph2Zn as the
nucleophile.
of eupomatilone 6, in four steps from 4 and 16 in 60% overall
yield.[25]
As previously described by Gurjar et al.[19] and Coleman
et al.,[17c] this structure is in fact 3-epi-eupomatilone 6, which
contains the 3R,4S,5R backbone sequence. Natural eupoma-
tilone 6, which contains the 3S,4S,5R sequence, can be
obtained from this material by subjection of 40 to 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) in hot toluene and
separation of the resulting epimers.[19]
Herein, we have described the enantioselective rhodium-
catalyzed cross-coupling of meso cyclic carboxylic anhydrides
with arylzinc reagents and the total syntheses of three
members of the eupomatilone family of lignan natural
products. The cross-coupling reaction proceeds with selectiv-
ities in excess of 80% ee with a variety of nucleophiles formed
from corresponding lithium reagents and used without
purification. Synthetic routes, which include the definition
or construction of three contiguous stereocenters with
excellent control, have been developed for eupomatilones 4
and 7, as well as the originally proposed structure of
eupomatilone 6. Each species is prepared in a concise four-
step sequence with greater than 50% overall yield. The
flexible synthetic route provides rapid stereoselective forma-
tion of the g-lactone core and allows ready manipulation of
the biaryl functionality.
[9] T. Hayashi, K. Yamasaki, Chem. Rev. 2003, 103, 2829, and
references therein.
[10] Rh complexes have been demonstrated to catalyze the addition
of aryl boronic acids and vinyl silanes to anhydrides, see:
a) reference [4c]; b) M. Yamane, K. Uera, K. Narasaka, Bull.
Chem. Soc. Jpn. 2005, 78, 477; c) M. Yamane, K. Uera, K.
Narasaka, Chem. Lett. 2004, 33, 424.
[11] The absolute configuration of keto acid 7 was determined by
analogy to the configuration of 11, which was previously
determined. See reference [6].
[12] For leading references on solutions to this problem, see: a) C.
Lutz, P. Knochel, J. Org. Chem. 1997, 62, 7895; b) C. Lutz, P.
Jones, P. Knochel, Synthesis 1999, 312.
[13] It should be noted that acyclic anhydrides were not tested under
these conditions, as similar reactivity is accessible utilizing less
expensive catalysts. See reference [4].
[14] Under these conditions, aliphatic nucleophiles are not compat-
ible. For example, BuLi and BnLi (BnBr/tBuLi) each provide
trace amounts of product and complex reaction mixtures.
[15] a) A. R. Carroll, W. C. Taylor, Aust. J. Chem. 1991, 44, 1615;
b) A. R. Carroll, W. C. Taylor, Aust. J. Chem. 1991, 44, 1705.
[16] a) S.-p. Hong, M. C. McIntosh, Org. Lett. 2002, 4, 19; b) J. M.
Hutchison, S.-p. Hong, M. C. McIntosh, J. Org. Chem. 2004, 69,
4185.
Received: February 22, 2007
Published online: May 11, 2007
Keywords: cross-coupling · homogeneous catalysis ·
phosphoramidites · rhodium · total synthesis
[17] a) S. H. Yu, M. J. Ferguson, R. McDonald, D. G. Hall, J. Am.
Chem. Soc. 2005, 127, 12808; b) G. W. Kabalka, B. Venkataiah,
.
Angew. Chem. Int. Ed. 2007, 46, 4514 –4518ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4517