(18) [M+], 312 (75), 147 (100), 91 (64), 56 (98). HR-MS (EI) m/z
calcd for C24H25N 327.1987, found 327.2002.
Experimental†
Representative procedure for MCl4-catalyzed intramolecular
hydroaminations of unactivated olefins
Acknowledgements
1-Trifluoroacetyl-2-methyl-4,4-diphenylpyrrolidine (2a, Table 1,
entry 6). An oven-dried sealed tube was charged under a positive
pressure of nitrogen with ZrCl4 (47 mg, 0.20 mmol, 20 mol%),
toluene (2 mL) and LDA (2.0 M in THF–n-heptane–ethylbenzene,
0.40 mL, 0.80 mmol). The resulting solution was stirred for
30 min at ambient temperature, followed by the addition of
1a (237 mg, 1.00 mmol). The reaction mixture was stirred at
120 ◦C for 18 h. The cold solution was subsequently treated
with trifluoroacetic anhydride (420 mg, 2.00 mmol). After stirring
for 15 min at ambient temperature, Et2O (50 mL) and saturated
aqueous (NH4)2CO3 (30 mL) were added. The separated aqueous
phase was extracted with Et2O (2 × 50 mL). The combined organic
layers were washed with brine (50 mL), dried over MgSO4 and
concentrated in vacuo. The remaining residue was purified by
column chromatography on silica gel (n-pentane–Et2O = 60 : 1 →
30 : 1) to yield 2a (290 mg, 0.87 mmol, 87%) as a light yellow solid
(mp 78.8–79.6 ◦C).
1H-NMR (300 MHz, CDCl3): d = 7.34–7.37 (m, 10H), 4.61 (dt,
J = 11.5, 1.8 Hz, 1H), 4.12–4.02 (m, 1H), 3.98 (d, J = 11.5 Hz, 1H),
3.06–2.97 (m, 1H), 2.32–2.25 (m, 1H), 1.40 (d, J = 6.2 Hz, 3H).
13C-NMR (75 MHz, DEPT, CDCl3): d = 155.3 (q, J = 36.1 Hz,
CO), 144.7 (Cq), 143.6 (Cq), 128.8 (CH), 128.7 (CH), 126.9 (CH),
126.8 (CH), 126.5 (CH), 126.3 (CH), 116.1 (q, J = 288.0 Hz, CF3),
56.2 (q, J = 2.6 Hz, CH2), 54.6 (CH), 53.3 (Cq), 44.4 (CH2), 18.9
(CH3). 19F-NMR (275 MHz, CDCl3): d = −72.37 (s). IR (ATR):
3060, 2932, 1685, 1496, 1446, 1253, 1205, 1180, 1136, 1033, 753,
696 cm−1. MS (EI), m/z (relative intensity) 334 (18) [M + H+], 333
(90) [M+], 220 (19), 207 (46), 193 (66), 179 (100), 115 (40), 91 (31),
69 (35). HR-MS (EI) m/z calcd for C19H18F3NO 333.1340, found
333.1322.
We thank the DFG (Emmy Noether-Program) and Sanofi-Aventis
for substantial financial support. Further support by the Fonds
der Chemischen Industrie, DuPont and BASF AG is gratefully
acknowledged.
References and notes
1 A. Mitchinson and A. Nadin, J. Chem. Soc., Perkin Trans. 1, 2000,
2862–2892.
2 (a) M. Beller, J. Seayad, A. Tillack and H. Jiao, Angew. Chem., Int. Ed.,
2004, 43, 3368–3398; (b) F. Alonso, I. P. Beletskaya and M. Yus, Chem.
Rev., 2004, 104, 3079–3159; (c) S. Hong and T. J. Marks, Acc. Chem.
Res., 2004, 37, 673–686.
3 (a) P. J. Walsh, A. M. Baranger and R. G. Bergman, J. Am. Chem.
Soc., 1992, 114, 1708–1719; (b) P. L. McGrane, M. Jensen and T.
Livinghouse, J. Am. Chem. Soc., 1992, 114, 5459–5460. For reviews,
see: (c) A. L. Odom, Dalton Trans., 2005, 225–233; (d) I. Bytschkov
and S. Doye, Eur. J. Org. Chem., 2003, 935–946; (e) A. P. Duncan and
R. G. Bergman, Chem. Rec., 2002, 2, 431–445.
4 P. D. Knight, L. Munslow, P. N. O’Shaughnessy and P. Scott, Chem.
Commun., 2004, 894–895.
5 D. V. Gribkov and K. C. Hultzsch, Angew. Chem., Int. Ed., 2004, 43,
5542–5546.
6 (a) J. A. Bexrud, J. D. Beard, D. C. Leitch and L. L. Schafer, Org. Lett.,
2005, 7, 1959–1962; (b) M. C. Wood, D. C. Leitch, C. S. Yeung, J. A.
Kozak and L. L. Schafer, Angew. Chem., Int. Ed., 2007, 46, 354–358;
(c) H. Kim, P. H. Lee and T. Livinghouse, Chem. Commun., 2005, 5205–
5207; (d) D. A. Watson, M. Chiu and R. G. Bergman, Organometallics,
2006, 25, 4731–4733; (e) A. L. Gott, A. J. Clarke, G. J. Clarkson and
P. Scott, Organometallics, 2007, 26, 1729–1737; (f) H. Kim, Y. K. Kim,
J. H. Shim, M. Kim, M. Han, T. Livinghouse and P. H. Leea, Adv. Synth.
Catal., 2006, 348, 2609–2618; (g) C. Mueller, C. Loos, N. Schulenberg
and S. Doye, Eur. J. Org. Chem., 2006, 2499–2503; (h) B. D. Stubbert
and T. J. Marks, J. Am. Chem. Soc., 2007, 129, 6149–6167.
7 (a) R. K. Thomson, J. A. Bexrud and L. L. Schafer, Organometallics,
2006, 25, 4069–4071; (b) Titanium imido complexes are likely also
involved in an elegant allylation of amines: B. Ramanathan and A. L.
Odom, J. Am. Chem. Soc., 2006, 128, 9344–9345.
Representative procedure for NH4O2CCF3-catalyzed
hydroamination reactions
8 L. Ackermann, Organometallics, 2003, 22, 4367–4368.
9 (a) L. Ackermann and R. Born, Tetrahedron Lett., 2004, 45, 9541–9544;
(b) L. Ackermann, L. T. Kaspar and C. J. Gschrei, Chem. Commun.,
2004, 2824–2825; (c) L. Ackermann, L. T. Kaspar and C. J. Gschrei,
Org. Lett., 2004, 6, 2515–2518; (d) L. T. Kaspar, B. Fingerhut and
L. Ackermann, Angew. Chem., Int. Ed., 2005, 44, 5972–5974; (e) G.
Abbiati, A. Casoni, V. Canevari, D. Nava and E. Rossi, Org. Lett.,
2006, 8, 4839–4842.
1-Benzyl-2-methyl-4,4-diphenylpyrrolidine (2b, Table 2, entry 16).
A solution of 1b (328 mg, 1.00 mmol) and NH4+ −O2CCF3
(26.2 mg, 0.20 mmol, 20 mol%) in dry 1,4-dioxane (2.0 mL) was
stirred in a sealed tube under N2 for 24 h at 130 ◦C. After cooling
to ambient temperature, saturated aqueous NaHCO3 (80 mL)
and Et2O (80 mL) were added. The separated aqueous phase was
extracted with Et2O (2 × 80 mL). The combined organic layers
were dried over MgSO4 and concentrated in vacuo. The remaining
residue was purified by column chromatography on silica gel (n-
pentane–Et2O = 30 : 1) to yield 2b (243 mg, 74%) as a yellow
solid (mp 70.6–72.2 ◦C). The spectral data were in accordance
with those reported in the literature.15a
1H NMR (300 MHz, CDCl3): d = 7.42–7.37 (m, 15H), 4.12 (d,
J = 13.3 Hz, 1H), 3.70 (d, J = 10.0 Hz, 1H), 3.30 (d, J = 13.3 Hz,
1H), 2.99–2.83 (m, 3H), 2.25 (dd, J = 12.2, 7.2 Hz, 1H), 1.21 (d,
J = 6.1 Hz, 3H). 13C-NMR (75 MHz, DEPT, CDCl3): d = 150.5
(Cq), 148.6 (Cq), 139.9 (Cq), 128.6 (CH), 128.2 (CH), 128.1 (CH),
127.8 (CH), 127.4 (CH), 127.2 (CH), 126.8 (CH), 125.8 (CH),
125.4 (CH), 66.4 (CH2), 59.7 (CH), 58.0 (CH2), 52.5 (Cq), 47.9
(CH2), 19.5 (CH3). IR (ATR): 3061, 3029, 2960, 2924, 2788, 1491,
1445, 1373, 730, 695 cm−1. MS (EI) m/z (relative intensity) 327
10 For intramolecular hydroamidation reactions of olefins, which proved
not to be applicable to more basic amines, see: (a) B. Schlummer and
J. F. Hartwig, Org. Lett, 2002, 4, 1471–1474; (b) C. M. Haskins and
D. W. Knight, Chem. Commun., 2002, 2724–2725; (c) C. M. Haskins
and D. W. Knight, Chem. Commun., 2005, 3162–3164; (d) Y. Yin and
G. Zhao, Heterocycles, 2006, 68, 23–31.
11 (a) Z. Li, J. Zhang, C. Brouwer, C.-G. Yang, N. W. Reich and C. He,
Org. Lett., 2006, 8, 4175–4178; (b) D. C. Rosenfeld, S. Shekhar, A.
Takemiya, M. Utsunomiya and J. F. Hartwig, Org. Lett., 2006, 8, 4179–
4182; (c) K. Motokura, N. Nakagiri, K. Mori, T. Mizugaki, K. Ebitani,
K. Jitsukawa and K. Kaneda, Org. Lett., 2006, 8, 4617–4620.
12 For selected important references, see: (a) L. L. Anderson, J. Arnold and
R. G. Bergman, J. Am. Chem. Soc., 2005, 127, 14542–14543; (b) A. E.
Cherian, G. J. Domski, J. M. Rose, E. B. Lobkovsky and G. W. Coates,
Org. Lett., 2005, 7, 5135–5137; (c) A. A. M. Lapis, B. A. D. Neto, J. D.
Scholten, F. M. Nachtigall, M. N. Eberlin and J. Dupont, Tetrahedron
Lett., 2006, 47, 6775–6779.
13 T. C. Wabnitz, J.-Q. Yu and J. B. Spencer, Chem. Eur. J., 2004, 10,
484–493.
14 (a) P. H. Martinez, K. C. Hultzsch and F. Hampel, Chem. Commun.,
2006, 2221–2223; (b) J. Seayad, A. Tillack, C. G. Hartung and M.
This journal is
The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 1975–1978 | 1977
©