conditions. The use of radical cyclization to build six-
membered rings has some limitations as well, often resulting
in very low yields.
In our continuing efforts to expand the utility of 2,1-
benzothiazine chemistry, we thought that our enantiopure
2,1-benzothiazines3 would be ideal to construct enatiomeri-
cally pure 3,4-dihydroquinolin-2(1H)-ones. We anticipated
that reductive desulfurization with sodium amalgam would
result in a transient metal amide that would condense
intramolecularly with the ester functional group to produce
a lactam (Scheme 2). Indeed, reductive desulfurization of 9
We recently reported the stereoselective, intramolecular
Michael addition of sulfoximine carbanions to R,â-unsatur-
ated esters as exemplified in Scheme 1.3 The preparation of
Scheme 1
Scheme 2
would yield 3,4-dihydroquinolin-2(1H)-one 10 in a concise
and especially straightforward way. Herein we reported the
first synthesis of enantiopure 3,4-dihydroquinolin-2(1H)-ones
under mild conditions.
Our initial evaluation of the reductive desulfurization of
benzothiazines was carried out using a simple system (Table
1). Treatment of benzothiazines 11a-d3 with excess sodium
amalgam in methanol/tetrahydrofuran at room temperature
sulfoximine 7 was conducted by using the methodology
introduced by Bolm and co-workers.4 Subsequent treatment
of sulfoximine 7 with LDA afforded 8 as a single stereo-
isomer in high yield. The reaction is stereospecific and offers
a way of establishing benzylic stereocenters with high
fidelity. We are interested in using these benzothiazines as
useful synthons in a variety of ways.
Benzothiazines that we have prepared have been directly
converted to indoles,5a allylanilines,5b 2-alkylanilines,5b-d and
2-alkenylanilines.5e Further, we have demonstrated that the
C2-symmetric bis-benzothiazines could be used as chiral
ligands in asymmetric allylic alkylations.5f We also applied
benzothiazines to the total syntheses of (+)-curcuphenol, (+)-
curcumene,6 erogorgiaene,7 and pseudopteroxazole.8
Table 1. Conversion of Benzothiazines 11 to
4-Methyl-3,4-dihydroquinolin-2(1H)-ones 12
(2) (a) Binot, G.; Zard, S. Z. Tetrahedron Lett. 2005, 46, 7503. (b) Clark,
A. J.; Jones, K.; McCarthy, C.; Storey, J. M. D. Tetrahedron Lett. 1991, 3,
2829. (c) Turner, K. L.; Baker, T. M.; Islam, S.; Procter, D. J.; Stefaniak,
M. Org. Lett. 2006, 8, 329. (d) Touzani, R.; Alper, H. J. Mol. Catal. A:
Chem. 2005, 227, 197. (e) Dong, C.; Alper, H., Tetrahedron: Asymmetry
2004, 15, 35. (f) Okuro, K.; Kai, H.; Alper, H. Tetrahedron: Asymmetry
1997, 8, 2307. (g) El Ali, B.; Okuro, K.; Vasapollo, G.; Alper, H. J. Am.
Chem. Soc. 1996, 118, 4264. (h) Manley, P. J.; Bilodeau, M. T. Org. Lett.
2004, 6, 2433. (i) Fujita, K.; Takahashi, Y.; Owaki, M.; Yamamoto K.;
Yamaguchi, R. Org. Lett. 2004, 6, 2785. (j) Jones G. In ComprehensiVe
Heterocyclic Chemistry; Boulton, A. J., McKillop, A., Eds.; Pergamon
Press: Oxford, UK, 1984; Vol. 2 (8). (k) Li, K.; Foresee, L. N.; Tunge, J.
A. J. Org. Chem. 2005, 70, 2881. (l) Kadnikov, D. V.; Larock, R. C. J.
Org. Chem. 2004, 69, 6772. (m) Marcaccini, S.; Pepino, R.; Pozo, M. C.;
Basurto, S.; Garc´ıa-Valverde, M.; Torroba, T. Tetrahedron Lett. 2004, 45,
3999.
(3) Harmata, M.; Hong, X. J. Am. Chem. Soc. 2003, 125, 5754.
(4) (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39, 5731.
(b) Bolm, C.; Hildebrand, J. P. J. Org. Chem. 2000, 65, 169.
(5) (a) Harmata, M.; Herron, B. F. Tetrahedron 1991, 47, 8855. (b)
Harmata, M.; Jones, D. E. Tetrahedron Lett. 1995, 36, 4769. (c) Harmata,
M.; Herron, B. F. Tetrahedron 1991, 47, 8855. (d) Harmata, M.; Claassen,
R. J., II; Barnes, C. L. J. Org. Chem. 1991, 56, 5059. (e) Harmata, M.;
Kahraman, M. Synthesis 1994, 142. (f) Harmata, M.; Ghosh, S. K. Org.
Lett. 2001, 3, 3321.
(6) Harmata, M.; Hong, X.; Barnes, C. L. Tetrahedron Lett. 2003, 44,
7261.
(7) Harmata, M.; Hong, X. Tetrahedron Lett. 2005, 46, 3847.
(8) (a) Harmata, M.; Hong, X.; Barnes, C. L. Org. Lett. 2004, 6, 2201.
(b) Harmata, M.; Hong, X. Org. Lett. 2005, 7, 3581.
2702
Org. Lett., Vol. 9, No. 14, 2007