LETTER
Synthetic Approach to Isoguanine Derivatives
1233
(12) (a) Baird-Lambert, J.; Marwood, J. F.; Davies, L. P.; Taylor,
K. M. Life Sci. 1980, 26, 1069. (b) Davies, L. P.; Taylor, K.
M.; Gregson, R. P.; Quinn, R. J. Life Sci. 1980, 26, 1079.
(c) Davies, L. P.; Cook, A. F.; Poonian, M. S.; Taylor, K. M.
Life Sci. 1980, 26, 1089.
(13) (a) Grozinger, K.; Freter, K. R.; Farina, P.; Gladczuk, A.
Eur. J. Med. Chem. 1983, 18, 221. (b) Nachman, R. J.
J. Heterocycl. Chem. 1985, 22, 953. (c) Grozinger, K. G.;
Onan, K. D. J. Heterocycl. Chem. 1986, 23, 737.
reaction times were usually required when the 1-(4-
cyanophenyl)imidazoles 3b or 3d were used as starting
material. This may be due to the poor solubility of these
compounds in the reaction solvent or to a reduced nucleo-
philicity of the amino group in the 5-position, as a result
of the electron-withdrawing effect of the aromatic sub-
stituent. Nevertheless, the yields are usually very good
except for the formation of compound 4d. This reaction
was particularly slow (11 d under reflux in acetonitrile
and 1 equiv of sulfuric acid) leading to extensive degrada-
tion of the reaction mixture and a poor isolated yield of the
product (43%).
(14) Bartlett, R. T.; Cook, A. F.; Holman, M. J.; McComas, W.
W.; Nowoswait, E. F.; Poonian, M. S. J. Med. Chem. 1981,
24, 947.
(15) (a) Alves, M. J.; Booth, B. L.; Freitas, A. P.; Proença, M. F.
J. Chem. Soc., Perkin Trans. 1 1992, 913. (b) Booth, B. L.;
Dias, A. M.; Proença, M. F. J. Chem. Soc., Perkin Trans. 1
1992, 2119. (c) Alves, M. J.; Booth, B. L.; Proença, M. F.
J. Heterocycl. Chem. 1994, 31, 345. (d) Booth, B. L.;
Coster, R. D.; Proença, M. F. Synthesis 1988, 389.
(e) Alves, M. J.; Booth, B. L.; Carvalho, M. A.; Pritchard, R.
G.; Proença, M. F. J. Heterocycl. Chem. 1997, 739. (f) Al-
Azmi, A.; Booth, B. L.; Carpenter, R. A.; Carvalho, M. A.;
Marrelec, E.; Pritchard, R. G.; Proença, M. F. J. Chem. Soc.,
Perkin Trans. 1 2001, 2532. (g) Booth, B. L.; Cabral, I. M.;
Dias, A. M.; Freitas, A. P.; Matos-Beja, A. M.; Proença, M.
F.; Ramos-Silva, M. J. Chem. Soc., Perkin Trans. 1 2001,
1241. (h) Carvalho, M. A.; Esteves, T. M.; Proença, M. F.;
Booth, B. L. Org. Biomol. Chem. 2004, 2, 1019.
In conclusion, an easily accessible substituted imidazoles
2 were used as the precursor of imidazoles 3, formed at
room temperature and in the presence of a primary alkyl
amine. Compounds 3 were cyclized either to N1-alkyl-
isoguanines 5 or N6-substituted isoguanines 4, depending
on the reaction conditions used. These compounds, which
are not easily prepared by other methods, were isolated in
very good yields from this common intermediate.
Acknowledgment
The authors gratefully acknowledge the financial support by the
University of Minho and Fundação para a Ciência e Tecnologia
(project PRAXIS/C/QUI/45391/2002).
(i) Carvalho, M. A.; Álvares, Y.; Zaki, M. E.; Proença, M.
F.; Booth, B. L. Org. Biomol. Chem. 2004, 2, 2340.
(16) (a) Dias, A. M.; Cabral, I. M.; Proença, M. F.; Booth, B. L.
J. Org. Chem. 2002, 67, 5546. (b) Zaki, M. E.; Proença, M.
F.; Booth, B. L. J. Org. Chem. 2003, 68, 276 .
References and Notes
(17) Compounds 3
Aqueous methylamine (for 3a and 3b, 14 equiv), or
benzylamine (for 3c and 3d, 2–3 equiv) was added to a
suspension of imidazole 2 in CH2Cl2 (for 3a and 3b), EtOH
(for 3c), or MeCN (for 3d, 2–12 mL). The mixture was
stirred at r.t. for 10 min to 18 h. The product precipitated
from the reaction mixture (3c and 3d) or the solvent was
removed in the rotary evaporator (3a and 3b) and EtOH was
added to the residue. The white solid was filtered and
washed with EtOH (3a–c), or MeCN(3d), and Et2O. The
structure of the products obtained was confirmed by
elemental analysis, 1H NMR and 13C NMR spectroscopy.
Characterization of 3a
(1) For a recent review, see: Legraverend, M.; Grierson, D. S.
Bioorg. Med. Chem. 2006, 14, 3987.
(2) (a) Farooqi, A. H. A.; Shukla, Y. N.; Shukla, A.; Bhakuni, D.
S. Phytochemistry 1990, 29, 2061. (b) Dahiya, J. S.; Tewari,
J. P. Phytochemistry 1991, 30, 2825. (c) Fujii, T.; Ohba, M.;
Kawamura, H.; Haneishi, T.; Matsubara, S. Chem. Pharm.
Bull. 1993, 41, 1362.
(3) (a) Hecht, S. M.; Leonard, N. J.; Schmitz, R. Y.; Skoog, F.
Phytochemistry 1974, 13, 329. (b) Chen, C.-M.; Smith, O.
C.; McChesney, J. D. Biochemistry 1975, 14, 3088.
(4) (a) Yamazaki, A.; Okutsu, M.; Yamada, Y. Nucleic Acids
Res. 1976, 3, 251. (b) Yamazaki, A.; Okutsu, M.
J. Heterocycl. Chem. 1978, 15, 353. (c) Chern, J.-W.; Lee,
H.-Y.; Huang, M.; Shish, F. J. Tetrahedron Lett. 1987, 28,
2151.
(5) Yamazaki, A.; Kumashiro, I.; Takenishi, T.; Ikehara, M.
Chem. Pharm. Bull. 1968, 2172.
(6) Davoll, J. J. Am. Chem. Soc. 1951, 73, 3174.
(7) Cramer, F.; Schlingloff, G. Tetrahedron Lett. 1964, 13,
3201.
(8) Nair, V.; Young, D. A. J. Org. Chem. 1985, 50, 406.
(9) Divakar, K. J.; Mottahedeh, M.; Reese, C. B.; Sanghvi, Y.
S.; Swift, K. A. D. J. Chem. Soc., Perkin Trans. 1 1991, 771.
(10) De Napoli, L.; Montesarchio, D.; Piccialli, G.; Santacroce,
C.; Varra, M. J. Chem. Soc., Perkin Trans. 1 1995, 15.
(11) (a) Fuhrman, F. A.; Fuhrman, G. J.; Kim, Y. H.; Pavelka, L.
A.; Moshee, H. S. Science 1980, 207, 193. (b) Quinn, R. J.;
Gregson, R. P.; Cook, A. F.; Bartlett, R. T. Tetrahedron Lett.
1980, 21, 567. (c) Cook, A. F.; Bartlett, R. T.; Gregson, R.
P.; Quinn, R. J. J. Org. Chem. 1980, 45, 4020.
1H NMR (300 MHz, DMSO-d6, 20 °C): d (mixture of
conformers A and B, ratio A/B = 3:2) = 9.90 (br s, 1 H, A),
8.00 (br s, 1 H, B), 7.40 (d, J = 9.0 Hz, 2 H), 7.39 (s, 1 H),
7.12 (d, J = 9.0 Hz, 2 H), 6.94 (br s, 2 H, A), 5.98 (br s, 2 H,
B), 3.97 (q, J = 7.2 Hz, 2 H), 3.81 (s, 3 H), 3.41 (s, 3 H, A),
2.74 (s, 3 H, B), 1.17 (t, J = 7.2 Hz, 3 H); 1H NMR (300
MHz, DMSO-d6, 50 °C): d (only one set of bands is
present) = 10.20–9.20 (br s, 1 H), 7.37 (d, J = 8.7 Hz, 2 H),
7.34 (s, 1 H), 7.11 (d, J = 8.7 Hz, 2 H), 6.80–6.30 (br s, 2 H),
3.99 (q, J = 7.2 Hz, 2 H), 3.82 (s, 3 H), 3.20 (s, 3 H), 1.18 (t,
J = 7.2 Hz, 3 H). 13C NMR (75 MHz, DMSO-d6): d = 163.49
(br, A), 159.20, 156.80 (br, B), 147.08 (br), 142.70, 130.99,
126.91, 126.72, 114.99, 110.00–114.00 (br), 59.47 (br),
55.55, 32.31 (br, A), 23.45 (br, B), 14.68. Anal. Calcd for
C15H19N5O3: C, 56.77; H, 6.04; N, 22.07. Found: C, 56.97;
H, 6.06; N, 21.57. IR (mull): 3251 (m), 3116 (m), 1640 (s),
1598 (s).
(18) Compounds 5
A suspension of 3a–d in EtOH (20–60 mL) was refluxed for
5 h to 4 d. The resulting suspension was filtered and washed
with MeCN (4 and 5a), EtOH (4 and 5b and d) or Et2O (4
and 5c) to give a mixture of compounds 4 and 5 in a ratio of
Synlett 2007, No. 8, 1231–1234 © Thieme Stuttgart · New York