Notes and references
1 J. A. Papin, T. Hunter, B. O. Palsson and S. Subramaniam, Nat. Rev.
Mol. Cell. Biol., 2005, 6, 99–111.
2 T. Pawson and P. Nash, Science, 2003, 300, 445–452.
3 R. B. Russell, F. Alber, P. Aloy, F. P. Davis, D. Korkin, M. Pichaud,
M. Topf and A. Sali, Curr. Opin. Struct. Biol., 2004, 14, 313–324.
4 S. Fletcher and A. D. Hamilton, Curr. Opin. Chem. Biol., 2005, 9,
632–638.
5 T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori and Y. Sakaki,
Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 4569–4574.
6 A. C. Gavin, M. Bosche, R. Krause, P. Grandi, M. Marzioch, A. Bauer,
J. Schultz, J. M. Rick, A. M. Michon, C. M. Cruciat, M. Remor,
C. Hofert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino,
K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch,
S. Bastuck, B. Huhse, C. Leutwein, M. A. Heurtier, R. R. Copley,
A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida,
T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer and
G. Superti-Furga, Nature, 2002, 415, 141–147.
7 P. Uetz, L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight,
D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili,
Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar,
M. J. Yang, M. Johnston, S. Fields and J. M. Rothberg, Nature, 2000,
403, 623–627.
Fig. 3 Cross-linking of GST was performed with 1, 2 and 4 molar
equivalents of either SOXL 1 (lanes 2, 6 and 10), DSS 4 (lanes 3, 7 and 11),
DSG 5 (lanes 4, 8 and 12), or SAB 6 (lanes 5, 9 and 13), as indicated. Lane
1 contains molecular weight markers only.
reactive ester in water,10 which is the dominant reaction for NHS
esters at low concentrations of protein and reagent.22 We therefore
set out to explore whether non-neighboring proteins might be
cross-linked by including bovine serum albumin (BSA), which
does not form strong complexes with GST. Equimolar mixtures of
BSA and GST exposed to either SOXL 1 or DSS 4 cross-linkers
then examined by immunoblotting did not display altered GST-
dimer formation (Fig. 2(a), lanes 11 and 12) and importantly, anti-
BSA antibody only detected monomer (y66 kDa), with no
evidence of covalently linked GST-BSA (y93 kDa, Fig. 2(b)) or
higher complexes.
8 S. Maslov and K. Sneppen, Science, 2002, 296, 910–913.
9 C. von Mering, R. Krause, B. Snel, M. Cornell, S. G. Oliver, S. Fields
and P. Bork, Nature, 2002, 417, 399–403.
10 G. T. Hermanson, Bioconjugate Techniques, Academic Press, London,
1996, pp. 169–297.
11 J. W. Back, L. De Jong, A. O. Muijsers and C. G. De Koster, J. Mol.
Biol., 2003, 331, 303–313.
12 (a) M. M. Young, N. Tang, J. C. Hempel, C. M. Oshiro, E. W. Taylor,
I. D. Kuntz, B. W. Gibson and G. Dollinger, Proc. Natl. Acad. Sci.
U. S. A., 2000, 97, 5802–5806; (b) F. X. Chu, S. O. Shan,
D. T. Moustakas, F. Alber, P. F. Egea, R. M. Stroud, P. Walter and
A. L. Burlingame, Proc. Natl. Acad. Sci. U. S. A., 2004, 101,
16454–16459.
13 F. X. Chu, S. Mahrus, C. S. Craik and A. L. Burlingame, J. Am. Chem.
Soc., 2006, 128, 10362–10363.
14 M. Trester-Zedlitz, K. Kamada, S. K. Burley, D. Fenyoe, B. T. Chait
and T. W. Muir, J. Am. Chem. Soc., 2003, 125, 2416–2425.
15 S. M. Brittain, S. B. Ficarro, A. Brock and E. C. Peters, Nat.
Biotechnol., 2005, 23, 463–468.
SOXL 1 was compared with commercially available cross-
linkers of varied size in order to test whether the superior efficiency
observed for SOXL 1 is due to the presentation of multiple reactive
groups or simply because it spans a more appropriate distance for
linking the GST homodimer than DSS 4. Neither five-carbon
16 C. Lottner, K.-C. Bart, G. Bernhart and H. Brunner, J. Med. Chem.,
2002, 45, 2079–2089.
17 A. J. Wright, S. E. Matthews, W. B. Fischer and P. D. Beer, Chem.–Eur.
J., 2001, 7, 3474–3481.
˚
disuccinimidyl glutarate (DSG, 5 y8 A) or ten-carbon sebacic acid
˚
bis(N-succinimidyl) ester (SAB, 6 y13 A) performed any better
˚
than DSS 4 (y11 A, Fig. 3) and were significantly less efficient
than SOXL 1, which discounts a simple distance effect and
18 Compound 2: (crystallizes with two independent half molecules in the
asymmetric unit), colourless tablet, 1.12 6 1.12 6 0.58 mm, triclinic,
¯
˚
P1, a = 11.7830(8), b = 15.3349(11), c = 31.054(2) A, a = 91.283(2), b =
reinforces the benefit of the multivalent architecture.
3
23
˚
91.879(2), c = 102.979(2)u, V = 5462.3(6) A , Z = 2, Dc = 1.295 g cm
,
Evaluation of SOXL 1 for cross-linking other protein–protein
interactions is underway. Recently, collaborators have used higher
concentrations of SOXL 1 in potentially reactive Tris buffer to
define oligomerisation activity of N-terminal and C-terminal
domains of the Bacillus subtilis DnaD protein.23 Meanwhile, we
are actively exploiting the rapid, adaptable synthesis to achieve
modular improvements to prototype 1, such as other protein
reactive groups, modulation of solubility and incorporation of
biotin for affinity purification. We anticipate that the defined
geometry of SOXL 1 may be useful for topological analysis of
protein complexes by mass spectrometry and are pursuing further
improvement of its architecture to this end, the progress of which
will be described in subsequent publications.
˚
2hmax = 55u, Mo-Ka, l = 0.710 73 A, v scans, T = 150(2) K, 50 321
reflections measured, all 24 449 unique used in the refinement, no
absorption or extinction corrections applied, structure solution by direct
and difference Fourier methods using SHELXS97, structure refinement
used SHELXL97, 1374 parameters, H atoms geometrically placed and
refined using a riding model, R = 0.0758, wR = 0.235, full-matrix least
2
23
.
˚
squares on F , final residual electron density 1.19 and 20.75 e A
CCDC 297190. For crystallographic data in CIF or other electronic
format see DOI: 10.1039/b701542a.
19 J. D. Hayes, J. U. Flanagan and I. R. Jowsey, Annu. Rev. Pharmacol.
Toxicol., 2005, 45, 51–88.
20 D. A. Fancy, K. Melcher, S. A. Johnston and T. Kodadek, Chem. Biol.,
1996, 3, 551–559.
21 D. B. Smith, M. R. Rubira, R. J. Simpson, K. M. Davern, W. U. Tiu,
P. G. Board and G. F. Mitchell, Mol. Biochem. Parasitol., 1988, 27,
249–256.
22 G. P. Smith, Bioconjugate Chem., 2006, 17, 501–506.
23 M. J. Carneiro, W. Zhang, C. Ioannou, D. J. Scott, S. Allen,
C. J. Roberts and P. Soultanas, Mol. Microbiol., 2006, 60, 917–924.
This work was supported by grants from BBSRC (E18957) and
Wellcome Trust (069955MA). We acknowledge the use of the
EPSRC Chemical Database Service at Daresbury.
2514 | Chem. Commun., 2007, 2512–2514
This journal is ß The Royal Society of Chemistry 2007