4918
A. Corsaro et al. / Tetrahedron Letters 48 (2007) 4915–4918
Table 4. Yieldsa (%) and anomeric ratiosb of 29, 30a–d, 31, 32a–d and
33, 34a–d
T., Bertino, J., Eds.; Academic Press: New York, 1981; p
229.
4. Paulsen, H.; Todt, K. Adv. Carbohydr. Chem. 1968, 23,
115–232.
Nucleobase
29+30 29:30 31+32 31:32 33 34
Thymine 7a
Cytosine 7bc
Uracil 7c
82.0
74.0
84.0
1:10
1:6
1:12
1:8
64.0
61.0
69.0
66.0
1:9
1:6
1:10
1:8
4.0 47.0
5.0 36.0
5.0 52.0
4.0 45.0
5. (a) Dyson, M. R.; Coe, P. L.; Walker, R. T. Carbohyd.
Res. 1991, 216, 237–248; (b) Bredenkamp, M. W.;
Holzapfel, C. W.; Swanepoel, A. D. Tetrahedron Lett.
1990, 31, 2759–2762; (c) Bellon, L.; Barascut, J. L.;
Imbach, J. L. Nucleosides Nucleotides 1992, 11, 1467–
1479.
5-F-Uracil 7d 80.0
a Isolated yields based on 28.
b Determined by 1H NMR spectroscopy.
c Cytosine was used as N-benzoyl derivative until the last step.
6. Rassu, G.; Spanu, P.; Pinna, L.; Zanardi, F.; Casiraghi, G.
Tetrahedron Lett. 1995, 36, 1941–1944.
7. Choi, Y.; Choo, H.; Chong, Y.; Lee, S.; Olgen, S.;
Schinazi, R. F.; Chu, C. K. Org. Lett. 2002, 4, 305–307;
Chu, C. K.; Choi, Y.; Choo, H.; Chong, Y.; Lee, S.; Zhu,
W.; Schinazi, R. F. Antiviral Res. 2002, 53, A36.
8. Taguchi, Y.; Suhara, Y. Bull. Chem. Soc. Jpn. 1986, 59,
2321–2324.
9. Pederson, R. L.; Liu, K. K. C.; Rutan, J. F.; Chen, L.;
Wong, C.-H. J. Org. Chem. 1990, 55, 4897–4901.
10. Romeo, G.; Iannazzo, D.; Piperno, A.; Romeo, R.;
Corsaro, A.; Rescifina, A.; Chiacchio, U. Mini-Rev. Org.
Chem. 2005, 2, 59.
ing to Haraguchi et al.24 and then with a process that
registers a minor number of simpler steps with respect
to that one of Jeong and co-workers.25
In conclusion, this strategy of thiocarbonyl ylide cyc-
loadditions leading to suitable tetrahydrothiophene
rings, which are coupled with a nucleobase, provides
an unprecedented and convenient route to different 40-
thionucleosides. It is based on the ready accessibility
of the starting materials for the thiocarbonyl ylide prep-
aration, and, above all, for the simplicity of the moder-
ate to good conversion of [3+2] cycloadditions.
Investigations on the antiviral and antitumoural activi-
ties of these and several other nucleosides will be the ob-
ject of a next work. Particularly, in addition to reactions
with alkenes bearing other different electron-withdraw-
ing groups, reactions of the a-hydroxymethyl substi-
tuted thiocarbonyl ylide will be investigated in order
to examine the stereochemical outcome due to a chiral
1,3-dipole, if necessary in the presence of chiral auxilia-
ries, by which the control of the stereochemistry can be
effected.
11. For a review, see: Kellog, R. M. Tetrahedron 1976, 32,
2165.
12. Hosomi, A.; Matsuyama, Y.; Sakurai, H. J. Chem. Soc.,
Chem. Commun. 1986, 1073.
13. These thionucleosides were distinguished in a- (trans) and
b-anomers (cis) in relation to the reciprocal position of the
C2-nucleobase and C4-hydroxymethyl group.
14. (a) Kita, Y.; Yasuda, H.; Tamura, O.; Itoh, F.; Tamura,
Y. Tetrahedron Lett. 1984, 25, 4681–4682; (b) Kita, Y.;
Tamura, O.; Yasuda, H.; Itoh, F.; Tamura, Y. Chem.
Pharm. Bull. 1985, 33, 4235–4241.
15. (a) Naka, T.; Minakawa, N.; Abe, H.; Kaga, D.; Matsuda,
A. J. Am. Chem. Soc. 2000, 122, 7233–7243, and references
cited therein; (b) Naka, T.; Nishizono, N.; Minakawa, N.;
Matsuda, A. Tetrahedron Lett. 1999, 40, 6297–6300, and
references cited therein.
16. Karlson, S.; Ho¨gberg, H.-E. Org. Lett. 1999, 1, 1667–
1679.
Acknowledgements
17. (a) Vedejis, E.; Martinez, G. R. J. Am. Chem. Soc. 1980,
102, 7993–7994; (b) Vedejis, E.; Martinez, G. R. J. Am.
Chem. Soc. 1979, 101, 6452–6454.
18. Walter, L. A.; Goodson, L. H.; Fosbinder, R. J. J. Am.
Chem. Soc. 1945, 67, 655–657.
Financial supports from the University of Catania and
Messina, and from MIUR (Rome), in the framework
of COFIN 2006 program are gratefully acknowledged.
19. Kikuchi, Y.; Kurata, H.; Nishiyama, S.; Yamamura, S.;
Kato, K. Tetrahedron Lett. 1997, 38, 4795–4798.
20. Nicolaou, K. C.; Papahatjis, D. P.; Clameron, D. A.;
Magolda, R. L.; Dolle, R. E. J. Org. Chem. 1985, 50,
1440–1456.
21. Aono, M.; Terao, Y.; Achiwa, K. Heterocycles 1986, 24,
313–315.
22. Jung, M. E.; Kretschik, O. J. Org. Chem. 1998, 63, 2975–
2981.
23. In addition to analytical and spectroscopic data, their
configurations were achieved by comparison with results
of 1H NOE experiments on the same compounds, with the
exception of 5-F-uracil, reported by Jeong and co-workers
(see Ref. 25).
References and notes
1. For reviews see: Huryn, D. M. Chem. Rev. 1992, 92, 1745–
1768; De Clercq, E. Nucleosides and Nucleotides 1994, 13,
1271–1295; Yokoyama, M. Synthesis 2000, 1637–1655;
Gumina, G.; Olgen, S.; Chu, C. K. In Antiviral Nucleo-
sides. Chiral Synthesis and Chemotherapy; Chu, C. K., Ed.;
Elsevier: New York, 2003; pp 77–189; Gumina, G.;
Copperwood, J. S.; Chu, C. K. In Antiviral Nucleosides.
Chiral Synthesis and Chemotherapy; Chu, C. K., Ed.;
Elsevier: New York, 2003; pp 191–258; Merino, P. Curr.
Med. Chem. 2006, 13, 539–545.
2. Reist, E. J.; Goodman, L.; Lee, W. W.; Baker, B. R.;
Benitez, A. J. Org: Chem. 1962, 27, 3274–3279.
3. Parks, R.; Stoeckler, J.; Cambor, C.; Savarese, T.;
Crabtree, G.; Chu, S. In Molecular Actions and Targets
for Cancer Chemotherapeutic Agents; Sartorelli, A., Lazo,
24. Haraguchi, K.; Takahashi, H.; Shiina, N.; Horii, C.;
Yoshimura, Y.; Nishikawa, A.; Sasakura, E.; Nakamura,
K. T.; Tanaka, H. J. Org. Chem. 2002, 67, 5919–5927.
25. Moon, H. R.; Kim, H. O.; Lee, S. K.; Choi, W. J.; Chun,
M. W.; Jeong, L. S. Bioorg. Med. Chem. 2002, 10, 1499.