H.-S. Yeom et al. / Tetrahedron Letters 48 (2007) 4817–4820
4819
cyclobutanol analogs, a four step sequence involving
Supplementary data
THP protection was required. However, for 5- and 6-
membered substrates, a sequence involving reaction of
dianion with cycloalkanone, followed by appropriate
protection, efficiently delivered desired substrates.
Supplementary data associated with this article can be
Treatment of propargyl acetate 3a with 1 mol % of
Au(PPh3)OTf pre-catalyst in dichloromethane at rt for
1 h, direct ring expansion without [3,3]-rearrangement
(route A, Scheme 2) occurred to give cyclopentanone
6a in an excellent yield (96%, Table 1, entry 1).12 Chang-
ing protecting group as in 3b–d led to faster [3,3]-rear-
rangement and completely diverted the reaction path
into rearrangement followed by cycloisomerization
(route C, Scheme 2), giving 7 in modest yields (entries
2, 4, and 6). In these cases, 6 or 8 could not be isolated
in any significant amounts. The reactivity of 3b–d shows
that the resulting O-acyl-allenyl intermediate cycloiso-
merize faster than ring-expansion, which is in contrast
to BnO-allenyl derivative 1 (Eq. 1) and this could be
rationalized by the lack of electron-donation of ester
oxygen to bring about activation of allene. Interestingly,
changing ligand into Au[t-Bu2P(o-biphenyl)]OTf further
increased the yield of 7 (entries 3 and 5).13 In an attempt
to decrease the rate of cycloisomerization, 3d was con-
verted into TMS ether and was subject to the condition
A in the presence of 2 equiv of isopropanol. Unsuccess-
fully, the reaction gave cycloisomerized 7d in 62% yield
in a much slower reaction.
References and notes
1. (a) Oelberg, D. G.; Schiavelli, M. D. J. Org. Chem. 1977,
42, 1804; (b) Schlossarczyk, H.; Sieber, W.; Hesse, M.;
Hanson, H. J.; Schmid, H. Helv. Chim. Acta 1973, 56,
875.
2. For examples of 1,3-acyl shift: (a) Marion, N.; Nolan, S.
P. Angew. Chem., Int. Ed. 2007, 46, 2750; (b) Shigemasa,
Y.; Yasui, M.; Ohrai, S.-I.; Sasaki, M.; Sashiwa, H.;
Saimoto, H. J. Org. Chem. 1991, 56, 910; (c) Ma, S.; Gao,
W. J. Org. Chem. 2002, 67, 6104; (d) Kim, S.; Kim, Y. G.
Synlett 1991, 869; (e) Shigemasa, Y.; Oikawa, H.; Sashiwa,
H.; Saimoto, H. Bull. Chem. Soc. Jpn. 1992, 65, 2594; (f)
Trost, B. M.; Oi, S. J. Am. Chem. Soc. 2001, 123, 1230; (g)
Grissom, J. W.; Klingberg, D.; Huang, D.; Slattery, B. J.
J. Org. Chem. 1997, 62, 603.
3. For recent reviews on gold-catalysis, see: (a) Hashmi, A. S.
K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45,
7896; (b) Hoffmann-Ro¨der, A.; Krause, N. Org. Biomol.
´
´
Chem. 2005, 3, 387; (c) Jimenez-Nunez, E.; Echavarren, A.
˜
M. Chem. Commun. 2007, 333.
4. (a) Binder, J. T.; Kirsch, S. F. Org. Lett. 2006, 8, 2151; (b)
Suhre, M. H.; Reif, M.; Kirsch, S. F. Org. Lett. 2005, 7,
3925; (c) Engel, D. A.; Dudley, G. B. Org. Lett. 2006, 8,
4027; (d) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc.
2004, 126, 15978; (e) Sherry, B. D.; Maus, L.; Laforteza,
B. N.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 8132; (f)
Horino, Y.; Luzung, M. R.; Toste, F. D. J. Am. Chem.
Soc. 2006, 128, 11364; (g) Zhao, J.; Hughes, C. O.; Toste,
F. D. J. Am. Chem. Soc. 2006, 128, 7436.
5. Au-catalyzed reaction of allenes are much less investigated
than those of alkynes. For example, see: (a) Morita, N.;
Krause, N. Org. Lett. 2004, 6, 4121; (b) Hoffmann-Ro¨der,
A.; Krause, N. Org. Lett. 2001, 3, 2537; (c) Morita, N.;
Krause, N. Angew. Chem., Int. Ed. 2006, 45, 1897; (d)
Kang, J.-E.; Lee, E.-S.; Park, S.-L.; Shin, S. Tetrahedron
Lett. 2005, 46, 7431.
6. (a) Zimmer, R.; Dinesh, C. U.; Nandanan, E.; Khan, F. A.
Chem. Rev. 2000, 100, 3067; (b) Yoshida, M.; Komatsu-
zaki, Y.; Nemoto, H.; Ihara, M. Org. Biomol. Chem. 2004,
2, 3099.
7. (a) Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804; (b)
Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128, 8414;
(c) Wang, S.; Zhang, L. Org. Lett. 2006, 8, 4585; (d)
Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442;
(e) Buzas, A.; Istrate, F.; Gagosz, F. Org. Lett. 2006, 8,
1957.
Reaction of 4 which is free of ring strain showed more
complex reaction profile. Using Au(PPh3)OTf
(5 mol %), small amount of ring expansion product
11a (route B, Scheme 2) was observed from the complex
reaction mixture, but most of the mass balance was
attributed to an unidentified product (entry 7). Use of
electron-deficient ligand gave a small amount of ring
expansion product 9a through route A (Scheme 2), al-
beit in low yield (entry 9). Use of Au[t-Bu2P(o-biphe-
nyl)]OTf (5 mol %) significantly improved the yield of
10a and delivered the spirocycle in 61% yield (entry 8).
Other derivatives of 4 gave more efficient conversion
into spirocycles 10 in 81–98% yield (entries 11–13).
Spirocyclization of six membered ring-substrates 5a–d
also went uneventfully giving the corresponding spiro-
cycles 13a–d in moderate to excellent yields (entries
14–17).
In summary, we reported a novel gold-catalyzed route to
conformationally biased spirocyclic furans having vari-
ous ring sizes. Our report shows the fate of 1-(3-hydroxy-
propynyl)cycloalkanol substrates is highly dependent
upon the ring size as well as migrating group. Further
effort to utilize this spirofuran skeleton in the synthesis
of nucleoside analogs is underway in our laboratory.
8. (a) Markham, J. P.; Staben, S. T.; Toste, F. D. J. Am.
Chem. Soc. 2005, 127, 9708; For Pd-catalyzed processes:
(b) Sugimoto, K.; Yoshida, M.; Ihara, M. Synlett 2006,
1923; (c) Wei, L.-M.; Wei, L.-L.; Pan, W.-B.; Wu, M.-J.
Tetrahedron Lett. 2003, 44, 595.
9. (a) Paquette, L. A.; Bibart, R. T.; Seekamp, C. K.;
Kahane, A. L. Org. Lett. 2001, 3, 4039, and references
cited therein; (b) Paquette, L. A.; Kahane, A. L.; Seek-
amp, C. K. J. Org. Chem. 2004, 69, 5555; (c) Yoshimura,
Y.; Asami, K.; Matsui, H.; Tanaka, H.; Takahata, H. Org.
Lett. 2006, 26, 6015.
10. A similar Pd-catalyzed process is reported: (a) Nemoto,
H.; Yoshida, M.; Fukumoto, K. J. Org. Chem. 1997, 62,
6450; (b) Jeong, I.-Y.; Shiro, M.; Nagao, Y. Heterocycles
Acknowledgements
This work was supported by the research fund of the
Hanyang University (HY-2005-s). Y.H.S. thanks
BK21 program for fellowship.