S. Manokaran et al. / Biochimica et Biophysica Acta 1804 (2010) 1965–1973
1973
anhydrase IV at 2.8-A resolution, Proc. Natl Acad. Sci. USA 93 (1996)
13589–13594.
[21] P.A. Boriack-Sjodin, R.W. Heck, P.J. Liaipis, D.N. Silverman, D.W. Christianson,
Structure determination of murine mitochondrial carbonic anhydrase V at 2.45-A
resolution: implications for catalytic proton transfer and inhibitor design, Proc.
Natl Acad. Sci. USA 92 (1995) 10949–10953.
[22] D.A. Whittington, A. Waheed, B. Ulmasov, G.N. Shah, J.H. Grubb, W.S., D.W.
Christianson, Crystal structure of the dimeric extracellular domain of human
carbonic anhydrase XII, a bitopic membrane protein overexpressed in certain
cancer tumor cells, Proc. Natl Acad. Sci. USA 98 (2001) 9545–9550.
[23] V. Alterio, M. Hilvo, A. DiFlore, C.T. Supuran, P. Pan, S. Parkkila, A. Scaloni, J.
Pastorek, S. Pastorekova, C. Pedone, A. Scozzafava, S.M. Monti, G. De Simone,
Crystal structure of the catalytic domain of the tumor-associated human carbonic
anhydrase IX, Proc. Natl Acad. Sci. USA 106 (2009) 16233–16238.
[24] B.C. Tripp, K. Smith, J.G. Ferry, Carbonic anhydrase: new insights for an ancient
enzyme, J. Biol. Chem. 276 (2001) 48615–48618.
microscopic/conformational state of the enzyme. As long as the newly
incorporated groups do not pose steric hindrance within the active
site pocket of the enzyme, nor do they alter the formal charges on the
Zn2+ cofactor, the resultant inhibitors would exhibit high potencies.
On the other hand, any factor which impairs deprotonation of the
sulfonamide moiety would populate the other conformational state of
the enzyme with weaker inhibitory potency. We are currently testing
the above hypothesis by rationally designing the new sets hCA
inhibitors, and we will report these findings subsequently.
Acknowledgments
[25] K.K. Kannan, B. Notstrand, K. Fridborg, S. Lovgren, A. Ohlsson, M. Petef, Crystal
structure of human erythrocyte carbonic anhydrase B. Three dimensional
structure at a nominal 2.2-A resolution, Proc. Natl Acad. Sci. USA 72 (1975)
51–55.
[26] G.M. Blackburn, B.E. Mann, B.F. Taylor, A.F. Worral, A nuclear magnetic resonance
study of the binding of novel N-hydroxybenzenesulfonamide carbonic anhydrase
inhibitors to native and cadmium-111 substituted carbonic anhydrase, Eur. J.
Biochem. 153 (1985) 553–558.
This research was supported by the NIH grants CA113746 and
CA132034 and the National Science Foundation grant DMR-0705767
to D.K.S and S.M. Sumathra Manokaran was supported by the National
Science Foundation—Experimental Program to Stimulate Competitive
Research Award [grant number EPS-0814442].
References
[27] K. Kanamori, J.D. Roberts, Nitrogen-15 nuclear magnetic resonance study of
benzenesulfonamide and cyanate binding to carbonic anhydrase, Biochemistry 22
(1983) 2658–2664.
[28] D.K. Srivastava, K.M. Jude, A.L. Banerjee, M. Haldar, S. Manokaran, J. Kooren, S.
Mallik, D.W. Christianson, Structural analysis of charge discrimination in the
binding of inhibitors to human carbonic anhydrases I and II, J. Am. Chem. Soc. 129
(2007) 5528–5537.
[29] K.M. Jude, A.L. Banerjee, M.K. Haldar, S. Manokaran, B. Roy, S. Mallik, D.K.
Srivastava, D.W. Christianson, Ultrahigh resolution crystal structures of human
carbonic anhydrases I and II complexed with “two-prong” inhibitors reveal the
molecular basis of high affinity, J. Am. Chem. Soc. 128 (2006) 3011–3018.
[30] J.E. Coleman, Chemical reactions of sulfonamides with carbonic anhydrase, Ann.
Rev. Pharmacol. 15 (1975) 221–242.
[31] S.P. Gupta, Quantitative structure–activity relationships of carbonic anhydrase
inhibitors, Prog. Drug Res. 60 (2003) 171–204.
[32] A. Vedani, E.F. Meyer Jr., Structure–activity relationships of sulfonamide drugs and
human carbonic anhydrase C: modeling of inhibitor molecules into the receptor
site of the enzyme with an interactive computer graphics display, J. Pharm. Sci. 73
(1984) 352–358.
[33] M.C. Menziani, P.G. DeBenedetti, F. Gago, W.G. Richards, The binding of
benzenesulfonamides to carbonic anhydrase enzyme. A molecular mechanics
study and quantitative structure-activity relationships, J. Med. Chem. 32 (1989)
951–956.
[1] H. Ke, H. Wang, Crystal structures of phosphodiesterases and implications on
substrate specificity and inhibitor selectivity, Curr. Top. Med. Chem. 7 (2007)
391–403.
[2] J. Ren, R. Esnouf, E. Garman, D. Somers, C. Ross, I. Kirby, J. Keeling, G. Darby, Y.
Jones, D. Stuart, High resolution structures of HIV-1 RT from four RT-inhibitor
complexes, Nat. Struct. Biol. 2 (1995) 293–302.
[3] B.M. Dunn, S. Hung, The two sides of enzyme–substrate specificity: lessons from
the aspartic proteinases, Biochim. Biophys. Acta 1477 (2000) 231–240.
[4] H.A. Carlson, Protein flexibility and drug design: how to hit a moving target, Curr.
Opin. Chem. Biol. 6 (2002) 447–452.
[5] C.F. Wong, J.A. McCammon, Protein flexibility and computer-aided drug design,
Annu. Rev. Pharmacol. Toxicol. 43 (2003) 31–45.
[6] S.J., TeagueImplications of protein flexibility for drug discovery, Nat. Rev. Drug
Discov. 2 (2003) 527–541.
[7] C.F. Wong, A.J. McCammon, Protein simulation and drug design, Adv. Protein
Chem. 66 (2003) 87–121.
[8] A.M. Davis, S.J. Teague, G.J. Kleywegt, Applications and limitations of X-ray
crystallographic data in structure-based ligand and drug design, Angew. Chem.
Int.Ed. 42 (2003) 2718–2736.
[9] N. Neamati, J.J. Barchi Jr., New paradigms in drug design and discovery, Curr. Top.
Med. Chem. 2 (2002) 211–227.
[10] W.R. Chegwidden, N.D. Carter, The carbonic anhydrases: new horizons,
Birkhauser Verlag, Basel, Switzerland, 2000.
[11] W.S. Sly, P.Y. Hu, Human carbonic anhydrases and carbonic anhydrase
deficiencies, Annu. Rev. Biochem. 64 (1995) 375–401.
[34] A.L. Banerjee, S. Tobwala, B. Ganguly, S. Mallik, D.K. Srivastava, Molecular basis for
the origin of differential spectral and binding profiles of dansylamide with human
carbonic anhydrase I and II, Biochemistry 44 (2005) 3673–3682.
[35] R.F. Chen, J.C. Kernohan, Combination of bovine carbonic anhydrase with
a
[12] R.E. Tashian, Genetics of the mammalian carbonic anhydrases, Adv. Genet. 30
(1992) 321–356.
[13] C.T. Supuran, A. Scozzafava, A. Casini, Carbonic anhydrase inhibitors, Med. Res.
Rev. 23 (2003) 146–189.
[14] C.T. Supuran, A. Scozzafava, J. Conway, Carbonic anhydrase—its inhibitors and
activators, CRC Press, Boca Raton, New York, 2004, pp. 1–363.
[15] V.M. Krishnamurthy, G.K. Kaufman, A.R. Urbach, I. Gitlin, K.L. Gudiksen, D.B.
Weibel, G.M. Whitesides, Carbonic anhydrase as a model for biophysical and
physical-organic studies of proteins and protein–ligand binding, Chem. Rev. 108
(2008) 946–1051.
[16] D.N. Silverman, R. McKenna, Solvent-mediated proton transfer in catalysis by
carbonic anhydrase, Acc. Chem. Res. 40 (2007) 669–675.
[17] K.K. Kannan, M. Ramanadham, T.A. Jones, Structure, refinement and function of
carbonic anhydrase isozymes: refinement of human carbonic anhydrase I, Ann. N.Y.
Acad. Sci. 429 (1984) 49–60.
fluorescent sulfonamide, J. Biol. Chem. 242 (1967) 5813–5823.
[36] C.A. Fierke, R.B. Thompson, Fluorescence-based biosensing of zinc using carbonic
anhydrase, Biometals 14 (2001) 205–222.
[37] R.B. Thompson, B.P. Maliwal, H.H. Zeng, Zinc biosensing with multiphoton
excitation using carbonic anhydrase and improved fluorophores, J. Biomed. Opt. 5
(2000) 17–22.
[38] J. Banerjee, M.K. Haldar, S. Manokaran, S. Mallik, D.K. Srivastava, New fluorescent
probes for carbonic anhydrases, Chem. Commun. 26 (2007) 2723–2725.
[39] L. Qin, D.K. Srivastava, Energetics of two-step binding of a chromophoric reaction
product, trans-3-indoleacryloyl-CoA, to medium chain acyl-CoA dehydrogenase,
Biochemistry 37 (1998) 3499–3508.
[40] G.G. Hammes, Thermodynamics and kinetics for the biological sciences, John
Wiley & Sons Inc, New York, 2000.
[41] S.K. Nair, D. Elbaum, D.W. Christianson, Unexpected binding mode of the
sulfonamide fluorophore 5-dimethylamino-1-naphthalene sulfonamide to
[18] A.E. Eriksson, T.A. Jones, A. Liljas, Refined structure of human carbonic anhydrase
II at 2.0 Å resolution, Proteins Struct. Funct. Genet. 4 (1988) 274–282.
[19] D.M. Duda, C. Tu, S.Z. Fisher, H. An, C. Yoshioka, L. Govindasamy, P.J. Laipis, M.
Aqbandje-McKenna, D.N. Silverman, R. McKenna, Human carbonic anhydrase III:
structural and kinetic study of catalysis and proton transfer, Biochemistry 44
(2005) 10046–10053.
human carbonic anhydrase II. Implications for the development of a zinc
biosensor, J. Biol. Chem. 71 (1996) 1003–1007.
[42] A.L. Banerjee, M. Swanson, B.C. Roy, X. Jia, M. Haldar, S. Mallik, D.K. Srivastava,
Protein surface-assisted enhancement in the binding affinity of an inhibitor for
recombinant human carbonic anhydrase-II, J. Am. Chem. Soc. 126 (2004)
10875–10883.
[20] T. Stams, S.K. Nair, T. Okuyama, A. Waheed, W.S. Sly, D.W. Christianson, Crystal
structure of the secretory form of membrane-associated human carbonic
[43] R. Gepshtein, D. Huppert, N. Agmon, Deactivation mechanism of green fluorescent
chromophore, J. Phys. Chem. B 110 (2006) 4434–4442.