New Nickel(II) Diimine Complexes
A R T I C L E S
Chart 2. Polyaromatic R-Diimine Nickel(II) Complex Family
complexes and tridentate 2,6-bis(imino)-pyridyl [N,N,N] iron
and cobalt6 complexes (Chart 1). Even the production of aqueous
polyethylene dispersions using catalysts of the salicyl imine type
has become possible.7
The alkyl side chains introduced to the polymer backbone
through a “chain walking” mechanism by the 1,4-diazabutadiene
catalyst 1, however, lead for the first time to LLDPE made
exclusively from ethylene.8 This discovery caused considerable
interest, since it allows us to generate high value branched
polymers without the application of expensive 1-alkene comono-
mers (e.g., 1-butene, 1-hexene, 1-octene, or longer).9 However,
one major drawback for commercialization is the rapid and
quantitative deactivation of catalytically active Ni(II) species
in the presence of hydrogen, which is inevitable for molecular
weight control in technical polymerization processes.10
Recently, we reported on a new “ortho-aryl effect” using
terphenyl substituted 1,4-diaza-1,3-butadiene ligands.11 The
corresponding nickel(II) complexes (e.g., 3a-c, Chart 2) are
excellent, highly active catalysts for ethylene homopolymeri-
zation reactions that produce almost perfectly linear polyeth-
ylenes in the presence of hydrogen. The present contribution
reports on 3,5-substituted terphenyl R-diimine ligands and their
corresponding monocationic Ni(II) complexes (Chart 3, 2a-
g). The “ortho-aryl” groups are prone to easy chemical
modification and are therefore ideal candidates for a micro-
structure control of LLDPE products by catalyst design.11,12
Material properties of selected LLDPE grades prepared by 2b,d/
TMA are discussed.
2. Results and Discussion
2.1. Synthesis and Characterization of the R-Diimine Ni(II)
Complexes. Starting from differently substituted phenyl boronic
acids and 2,6-dibromoaniline, the corresponding 2,6-diphenyl-
anilines were prepared by Suzuki cross coupling reactions
(Scheme 1).11,13,14 Acid-catalyzed condensation with R,â-
diketones, like 2,3-butadione or acenaphthenequinone, affords
a-h in up to 80% yield.15 Reaction of NiBr2 precursors, like
(DME)NiBr2, with an R-diimine ligand of lower sterical demand,
e.g., N,N′-bis-2,6-diisopropylphenyl-1,4-diaza-2,3-dimethyl-1,3-
butadiene, leads to the corresponding complex 1, as expected.2
However, all attempts to produce crystallizable neutral NiCl2
or NiBr2 complexes derived from the aryl substituted R-diimine
ligands a-h failed.
A strategy for an efficient synthesis of such bulky complexes
uses trityl tetrakis(pentafluorophenyl)borate ([Ph3C][B(C6F5)4])
or trityl hexachloroantimonate ([Ph3C][SbCl6]), which abstracts
one acetylacetonato (acac) ligand from the Ni(acac)2 precursor
in the presence of a-g. This convenient route gives the
crystalline, monocationic complexes 2a-g in up to 95% isolated
yields (Chart 3).16,17
(2) (a) Brookhart, M.; Johnson, L. K.; Killian, C. M. J. Am. Chem. Soc. 1995,
117, 6414. (b) Rieger, B.; Baugh, L. S.; Kacker, S.; Striegler, S., Eds. Late
Transition Metal Polymerization Catalysis; Wiley - VCH: Weinheim,
Germany, 2003; p 331. (c) Brookhart, M.; Ittel, S. D.; Johnson, L. K. Chem.
ReV. 2000, 100, 1169. (d) Gibson, V. C.; Spitzmesser, S. K. Chem. ReV.
2003, 103, 283. (e) Gates, D. P.; Svejda, S. A.; Onate, E.; Killian, C. M.;
Johnson, L. K.; White, P. S.; Brookhart, M. Macromolecules 2000, 33,
2320.
(3) (a) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc. 1996,
118, 267. (b) Mecking, S.; Johnson, L. K.; Wang, L.; Brookhart, M. J.
Am. Chem. Soc. 1998, 120, 888. (c) Heinemann, J.; Mu¨lhaupt, R.;
Brinkmann, P.; Luinstra, G. Macromol. Chem. Phys. 1999, 200 (2), 384.
(d) Michalak, A.; Ziegler, T. J. Am. Chem. Soc. 2001, 123 (49), 12266. (e)
Philipp, D. M.; Muller, R. P.; Goddard, I., W. A.; Storer, J.; McAdon, M.;
Mullins, M. J. Am. Chem. Soc. 2002, 124 (34), 10198. (f) Gottfried, A. C.;
Brookhart, M. Macromolecules 2001, 34 (5), 1140. (g) Popeney, C.; Guan,
Z. Organometallics 2005, 24 (6), 1145.
(4) (a) Wang, C.; Friedrich, S.; Younkin, T. R.; Li, R. T.; Grubbs, R. H.;
Bansleben, D. A.; Micheal, W. D. Organometallics 1998, 17 (15), 3149.
(b) Younkin, T. R.; Connor, E. F.; Henderson, J. I.; Friedrich, S. K.; Grubbs,
R. H.; Bansleben, D. A. Science 2000, 287, 460. (c) Goettker-Schnetmann,
I.; Wehrmann, P.; Roehr, C.; Mecking, S. Organometallics 2007, 26 (9),
2348.
(5) (a) Lee, B. Y.; Bazan, G. C.; Vela, J.; Komon, Z. J. A.; Bu, X. J. Am.
Chem. Soc. 2001, 123 (22), 5352. (b) Diamanti, S. J.; Ghosh, P.; Shimizu,
F.; Bazan, G. C. Macromolecules 2003, 36 (26), 9731.
We obtained single crystals suitable for X-ray diffraction
analysis by slow diffusion of n-pentane in a dichloromethane
solution of 2d′, e, f,18 and g (Figures 1 and 2). The unit cell
includes two (2d′,e) or four (2f,g) ion pairs, respectively. In
contrast to the tetrahedral dibromo complexes of type 1, the
(6) (a) Brookhart, M.; Small, B. L.; Bennett, A. M. A. J. Am. Chem. Soc.
1998, 120, 4049. (b) Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.;
Maddox, P. J.; McTavish, S. J.; Solan, G. A.; White, A. J. P.; Williams,
D. J. Chem. Commun. 1998, 849. (c) Britovsek, G. J. P.; Bruce, M.; Gibson,
V. C.; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.;
Redshaw, C.; Solan, G. A.; Stro¨mberg, S.; White, A. J. P.; Williams, D. J.
J. Am. Chem. Soc. 1999, 121, 8728.
(7) (a) Held, A.; Bauers, F. M.; Mecking, S. Chem. Commun. 2000, 4, 301.
(b) Zuideveld, M. A.; Wehrmann, P.; Ro¨hr, C.; Mecking, S. Angew. Chem.
2004, 116, 887 or Angew. Chem., Int. Ed., 2004, 43 (7), 869.
(8) Guan, Z.; Cotts, P. M.; McCord, E. F.; McLain, S. J. Science 1999, 238,
2059.
(12) (a) Ionkin, A. S.; Marshall, W. J. J. Organomet. Chem. 2004, 689 (6),
1057. (b) Ionkin, A. S.; Marshall, W. J. Organometallics 2004, 23 (13),
3276.
(13) Miura, Y.; Oka, H.; Momoki, M. Synthesis 1995, 1995 (11), 1419.
(14) Kipiani, G. Ph.D. Thesis, University Ulm, 2005.
(9) In the year 2004 35 Mio tons of PE-LD/PE-LLD and 25 Mio tons of PE-
HD were consumed worldwide, and consumption is considered to grow
by 5% p.a. at least until 2010. PlasticsEurope Deutschland, WG Statistics
and Market Research; cf. http://www.Vke.de/de/infomaterial/download/.
(10) (a) The genuine reason, however, for this unexpected reactivity difference
still remains unclear. We are making investigations on this interesting effect
and will publish the first results soon. (b) For technical reasons heteroge-
neous catalysts are mainly used in industry. (c) A fine study with a related
acenaphthene backbone R-diimine dibromo nickel(II) complex to its
polymerization behaviour in the presence of hydrogen was published earlier,
proving the rapid and quantitative deactivation of the complex. cf. de Souza,
R. F.; Mauler, R. S.; Rochefort Neto, O. I. Macromol. Chem. Phys. 2001,
202 (17), 3432.
(15) The yields depend strongly on the individual substitution pattern. Introducing
sterically demanding groups R1-R3 to the aniline fragments or R′ of the
R,â-diketones leads to a decline in yield.
(16) Moody, L. S.; Mackenzie, P. B.; Killian, C. M.; Lavoie, G. G.; Ponasik, J.
A., Jr.; Barrett, A. G.; Smith, T. W.; Pearson, J. C. WO 00/50470, 2000.
(17) For a nice synthesis strategy towards the analogue η3-allyl N,N′-bis(2,6-
bis(3-trimethylsilylphenyl)phenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene nickel-
(II) complex, cf.: Ionkin, A. S.; Marshall, W. J. J. Organomet. Chem. 2004,
689 (6), 1057.
(18) Experiments that afford single crystals of 2a suitable for X-ray diffraction
analysis were not successful. Therefore, we applied the relative system 2g
with two methyl substituents in para-position to the aza-group. We suggest
that these methyl groups, at the periphery of the complex structure, have
a negligible sterical effect on its solid state geometry.
(11) Schmid, M.; Eberhardt, R.; Klinga, M.; Leskela¨, M.; Rieger, B. Organo-
metallics 2001, 20 (11), 2321.
9
J. AM. CHEM. SOC. VOL. 129, NO. 29, 2007 9183