Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C8CC07249C
COMMUNICATION
Journal Name
3
For some selected recent examples involving chiral γ-
substituted -unsaturated compounds as valuable
following one-step alcoholysis of 5ft direct resulted in 16 in 56%
yield. Then, by following the reported procedure,19 the key
intermediate 17 could be accessed.
α,β
synthetic intermediates in the total synthesis of complex
natural products, see: (a) X. Huang, L. Song, J. Xu, G. Zhu, B.
Liu, Angew. Chem. Int. Ed., 2013, 52, 952; (b) X. Zhao, W. Li, J.
Wang, D. Ma, J. Am. Chem. Soc., 2017, 139, 2932; (c) W.
Chen, X.-D. Yang, W.-Y. Tan, X.-Y. Zhang, X.-L. Liao, H. Zhang,
Angew. Chem. Int. Ed., 2017, 56, 12327; (d) C. Xie, J. Luo, Y.
Zhang, L. Zhu, R. Hong, Org. Lett., 2017, 19, 3592.
Scheme 4 Application of the Present Methodology in Organic
Synthesis
4
(a) M. Chen, J. F. Hartwig, Angew. Chem. Int. Ed., 2014, 53,
12172; (b) M. Chen, J. F. Hartwig, Angew. Chem. Int. Ed.,
2016, 55, 11651.
5
6
L. Næsborg, K. S. Halskov, F. Tur, S. M. N. Mønsted, K. A.
Jørgensen, Angew. Chem. Int. Ed., 2015, 54, 10193.
(a) S. R. Waetzig, D. K. Rayabarapu, J. D. Weaver, J. A. Tunge,
Angew. Chem. Int. Ed., 2006, 45, 4977. (b) J. Fournier, O.
Lozano, C. Menozzi, S. Arseniyadis, J. Cossy, Angew. Chem.
Int. Ed., 2013, 52, 1257.
Conclusions
7
8
9
W.-B. Liu, N. Okamoto, E. J. Alexy, A. Y. Hong, K. Tran, B. M.
Stoltz, J. Am. Chem. Soc., 2016, 138, 5234.
S. Rieckhoff, J. Meisner, J. Kästner, W. Frey, R. Peters, Angew.
Chem. Int. Ed., 2018, 57, 1404.
For some recent reviews on coumarins, see: (a) F. G. Medina,
In summary, a highly regio- and enantioselective catalytic
asymmetric vinylogous allylic alkylation was achieved by using
α
,
β
-unsaturated lactones bearing an electron-withdrawing
J. G. Marrero, M. Mac
Guerrero, A. G. T. Garc
í
as-Alonso, M. C. Gonz
í
ález, I. Córdova-
a, S. Osequeda-Robles, Nat. Prod.
group at -position and an exocyclic methyl group at β-
α
position (including coumarins). The present methodology was
successfully applied in the asymmetric synthesis of an
advanced synthetic intermediate, which was employed in the
synthesis of an investigational new drug candidate. The further
expansion of pronucleophile types in vinylogous reaction and
application of the present methodology to complex natural
product synthesis are underway.
Rep., 2015, 32, 1472; (b) L. G. de Souza, M. N. Rennó, J. D.
Figueroa-Villar, Chem-Bio Interat, 2016, 254, 11; (c) J.
Dandriyal, R. Singla, M. Kumar, V. Jaitak, Eur. J. Med. Chem.,
2016, 119, 141; (d) Priyanka, R. K. Sharma, D. Katiyar,
Synthesis, 2016, 48, 2303; (e) Y.-Q. Hu, Z. Xu, S. Zhang, X. Wu,
J.-W. Ding, Z.-S. Lv, L.-S. Feng, Eur. J. Med. Chem., 2017, 136
122.
,
10 (a) G. Bergonzini, S. Vera, P. Melchiorre, Angew. Chem. Int.
Ed., 2010, 49, 9685; (b) J. Stiller, E. Marqués-López, R. P.
Herrera, R. Fröhlich, C. Strohmann, M. Christmann, Org. Lett.,
2011, 13, 70.
Conflicts of interest
11 (a) S. Zhao, Y.-Y. Zhao, J.-B. Lin, T. Xie, Y.-M. Liang, P.-F. Xu,
Org. Lett., 2015, 17, 3206; (b) S. Kayal, S. Mukherjee, Org.
Lett., 2017, 19, 4944; (c) D. Kowalczyk, Ł. Albrecht, Adv.
Synth. Catal., 2018, 360, 406; (d) During the preparation of
this manuscript, Mukherjee group published a paper similar
to part of our work (first disclosed on line on 4 June 2018 as
an Advance Article and published officially in issue 26 (14
July, 2018)), which focused on iridium-catalyzed direct
asymmetric vinylogous allylic alkylation of coumarins, see: R.
There are no conflicts to declare.
Acknowledgements
We gratefully acknowledge the financial support from the
“Thousand Youth Talents Plan”, the National Natural Sciences
Foundation of China (No. 21672235 and No. 21871287), the
Strategic Priority Research Program of the Chinese Academy of
Sciences (No. XDB20000000), the “Shanghai Rising-Star Plan” (No.
15QA1404600), CAS Key Laboratory of Synthetic Chemistry of
Natural Substances and Shanghai Institute of Organic Chemistry.
Sarkar, S. Mitra, S. Mukherjee, Chem. Sci., 2018, 9, 5767.
12 C. C. J. Loh, M. Schmid, B. Peters, X. Fang, M. Lautens, Angew.
Chem. Int. Ed., 2016, 55, 4600.
13 H. Xu, L. Laraia, L. Schneider, K. Louven, C. Strohmann, A. P.
Antonchick, H. Waldmann, Angew. Chem. Int. Ed., 2017, 56
11232.
,
14 A. Hassan, J. R. Zbieg, M. J. Krische, Angew. Chem. Int. Ed.,
2011, 50, 3943.
Notes and references
15 (a) H.-J. Zhang, C.-Y. Shi, F. Zhong, L. Yin, J. Am. Chem. Soc.,
2017, 139, 2196; (b) H.-J. Zhang, A. W. Schuppe, S.-T. Pan, J.-
X. Chen, B.-R. Wang, T. R. Newhouse, L. Yin, J. Am. Chem.
Soc., 2018, 140, 5300. (c) H.-J. Zhang, L. Yin, J. Am. Chem.
Soc., 2018, 140, DOI: 10.1021/jacs.8b07929.
1
(a) G. Casiraghi, L. Battistini, C. Curti, G. Rassu, F. Zanardi,
Chem. Rev., 2011, 111, 3076; (b) S. V. Pansare, E. K. Paul,
Chem. Eur. J., 2011, 17, 8770; (c) V. Bisai, Synthesis, 2012, 44,
1453; (d) M. Kalesse, M. Cordes, G. Symkenberg, H.-H. Lu,
Nat. Prod. Rep., 2014, 31, 563; (e) M. S. Roselló, C. del Pozo,
S. Fustero, Synthesis, 2016, 48, 2553. (f) Y. Yin, Z. Jiang,
16 J. F. Teichert, B. L. Feringa, Angew. Chem. Int. Ed., 2010, 49
2486.
,
ChemCatChem, 2017, 9, 4306.
17 C. Defieber, M. A. Ariger, P. Moriel, E. M. Carreira, Angew.
Chem. Int. Ed., 2007, 46, 3139.
18 W.-B. Liu, C. Zheng, C.-X. Zhuo, L.-X. Dai, S.-L. You, J. Am.
Chem. Soc., 2012, 134, 4812.
19 M. Palucki, J. M. Um, N. Y. Yasuda, D. A. Conlon, F.-R. Tsay, F.
W. Hartner, Y. Hsiao, B. Marcune, S. Karady, D. L. Hughes, P.
G. Dormer, P. J. Reider, J. Org. Chem., 2002, 67, 5508.
2
For some selected reviews, see: (a) Z. Lu, S. Ma, Angew.
Chem. Int. Ed., 2008, 47, 258; (b) J. F. Hartwig, L. M. Stanley,
Acc. Chem. Res., 2010, 43, 1461; (c) J. D. Weaver, A. Recio, A.
J. Grenning, J. A. C. Tunge, Chem. Rev., 2011, 111, 1846; (d) S.
Oliver, P. A. Evans, Synthesis, 2013, 45, 3179; (e) J. C.
Hethcox, S. E. Shockley, B. M. Stoltz, ACS Catal., 2016,
6207; (f) J. Qu, G. Helmchen, Acc. Chem. Res., 2017, 50, 2539.
6,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins