Communications
Kletsas, W. Li, Z. Han, V. Papadopoulos, Biochem. Pharmacol.
2004, 67, 1927 – 1932; c) U. R. Mach, A. E. Hackling, S. Per-
achon, S. Ferry, C. G. Wermuth, J.-C. Schwartz, P. Sokoloff, H.
Stark, ChemBioChem 2004, 5, 508 – 518; d) D. E. Muscarella,
K. A. OꢀBrian, A. T. Lemley, S. E. Bloom, Toxicol. Sci. 2003, 74,
66 – 73.
conditions employed, and gave 2n in a yield of only 18% after
80% conversion (entries 4 and 5).
On considering the obtained results, it becomes clear that
the substrates must satisfy certain requirements for the
iodine-mediated cyclization: R1 needs to be either a transi-
tion-state-stabilizing (Table 1, entries 1–8) or
a bulky
[3] See, for example: a) B. A. Sweetman, H. Müller-Bunz, P. J.
Guiry, Tetrahedron Lett. 2005, 46, 4643– 4646; b) F. Durola, J.-P.
Sauvage, O. S. Wenger, Chem. Commun. 2006, 171 – 173;
c) C. W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M.
Brown, A. R. Cowley, D. I. Hulmes, A. J. Blacker, Org. Process
Res. Dev. 2003, 7, 379 – 384; d) N. W. Alcock, J. M. Brown, G. I.
Hulmes, Tetrahedron: Asymmetry 1993, 4, 743– 756.
(Table 2, entry 3) substituent; otherwise different iodine
sources have to be used (Table 2, entries 1, 2, 4, 5). Only
when R1 contained a coordinating substituent or was unsub-
stituted (Table 1, entries 9 and 10) did the reaction not
proceed at all.
In conclusion, we have presented a general and flexible
approach to highly substituted isoquinoline building blocks,
which can be further functionalized. Depending on the nature
of the substrate employed, acidic, basic, or neutral reaction
conditions can be used, which makes this method compatible
with sensitive, highly functionalized molecules. Additional
studies on this method to broaden the scope even further is
currently underway.
[4] See, for example: a) K.-H. Fang, L.-L. Wu, Y.-T. Huang, C.-H.
Yang, I.-W. Sun, Inorg. Chim. Acta 2006, 359, 441 – 450; b) S.-J.
Liu, Q. Zhao, R.-F. Chen, Y. Deng, Q.-L. Fan, F.-Y. Li, L.-H.
Wang, C.-H. Huang, W. Huang, Chem. Eur. J. 2006, 12, 4351 –
4361; c) Q. Zhao, S. Liu, M. Shi, C. Wang, M. Yu, L. Li, F. Li, T.
Yi, C. Huang, Inorg. Chem. 2006, 45, 6152 – 6160; d) A.
Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani,
S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M.
Hoshino, K. Ueno, J. Am. Chem. Soc. 2003, 125, 12971 – 12979.
[5] a) W. M. Whaley, T. R. Govindachari, in Organic Reactions,
Vol. 6 (Ed: R. Adams), Wiley, New York, 1951, pp. 151 – 190;
b) W. M. Whaley, T. R. Govindachari, in Organic Reactions,
Vol. 6 (Ed: R. Adams), Wiley, New York, 1951, pp. 74 – 150;
c) W. J. Gensler, Organic Reactions, Vol. 6 (Ed: R. Adams),
Wiley, New York, 1951, pp. 191 – 206; d) K. W. Bentley, Nat.
Prod. Rep. 2005, 22, 249 – 268.
[6] See, for example: a) F. Maassarani, M. Pfeffer, G. Le Borgne, J.
Chem. Soc. Chem. Commun. 1987, 565 – 567; b) G. Wu, S. Geib,
A. L. Rheingold, R. F. Heck, J. Org. Chem. 1988, 53, 3238 – 3241;
c) I. R. Girling, D. A. Widdowson, Tetrahedron Lett. 1982, 23,
4281 – 4284; d) Q. Huang, J. A. Hunter, R. C. Larock, Org. Lett.
2001, 3, 2973– 2976; e) K. R. Roesch, H. Zhang, R. C. Larock, J.
Org. Chem. 1998, 63, 5306 – 5307; f) K. R. Roesch, H. Zhang,
R. C. Larock, J. Org. Chem. 2001, 66, 8042 – 8051; g) G. Dai,
R. C. Larock, J. Org. Chem. 2002, 67, 7042 – 7047; h) Q. Huang,
R. C. Larock, J. Org. Chem. 2003, 68, 980 – 988.
Experimental Section
Azide 1e (7.22 mg, 0.29 mmol) was dissolved in CH2Cl2 (0.1m) and
NaHCO3 (1 equiv) added. Iodine (5 equiv) was added and the
solution stirred in the dark for 24 h. After complete conversion (as
evident by TLC) the reaction was quenched with Na2S2O3 solution,
the product extracted with ethyl acetate, dried over MgSO4, and
purified by column chromatography (SiO2) to yield 6.9 mg (69%) of
2e.
Barluenga reagent (Py2IBF4, 2 equiv) was dissolved in CH2Cl2
(0.16m) cooled to À788C under argon and then HBF4 (54% in Et2O;
2 equiv) added. The solution was transferred to a solution of azide 1o
(25 mg, 82 mmol) in CH2Cl2 (1.33m) at À788C. After 1 h, the reaction
was quenched with Na2S2O3 solution, the product extracted with ethyl
acetate, dried over MgSO4, and purified by column chromatography
(SiO2) to yield 20.1 mg (61%) of 2o.
[7] See, for example: a) D. Zhang, Z. Liu, E. K. Yum, R. C. Larock,
J. Org. Chem. 2007, 72, 251 – 262; b) D. Yue, D. C. Nicola, R. C.
Larock, J. Org. Chem. 2006, 71, 3381 – 3388; c) K. O. Hessian,
B. L. Flynn, Org. Lett. 2003, 5, 4377 – 4380; d) X. Yao, C.-J. Li,
Org. Lett. 2006, 8, 1953– 1955; e) N. Asao, S. Chan, K.
Takahashi, Y. Yamamoto, Tetrahedron 2005, 61, 11322 – 11326.
[8] G. B. Bajracharya, N. K. Pahadi, I. D. Gridnev, Y. Yamamoto, J.
Org. Chem. 2006, 71, 6204 – 6210.
[9] N. K. Pahadi, PhD thesis, Tohoku University, 2005.
[10] A similar reaction pathway as described takes place: D. J. Gorin,
N. R. Davis, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 11260 –
11261.
Received: March 31, 2007
Published online: May 22, 2007
Keywords: azides · cyclization · heterocycles · iodine ·
.
isoquinolines
[1] K. W. Bentley, The Isoquinoline Alkaloids, Vol. 1, Hardwood
Academic, Amsterdam, 1998.
[2] See, for example: a) F. Dzierszinski, A. Coppin, M. Mortuaire, E.
Dewally, C. Slomianny, J.-C. Ameisen, F. DeBels, S. Tomavo,
Antimicrob. Agents Chemother. 2002, 46, 3197 – 3207; b) D.
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 4764 –4766