10.1002/chem.201905519
Chemistry - A European Journal
COMMUNICATION
The ECD (electronic circular dichroism) signals were
observed from (+)-5ba and (–)-5ba with opposite signs and
similar intensities, namely mirror images (Figure 2). Additionally,
the absolute configuration of (+)-5ba was determined to be
9S,16R by comparing the observed ECD spectrum of (+)-5ba
with the theoretical ECD spectrum of (9S,16R)-5ba (Figure 2).
(Japan). Y.A. thanks JSPS research fellowship for young
scientists (No. 17J08763). We thank Takasago International
Corporation for the gift of H8-binap, segphos, tol-segphos, xyl-
segphos, and dtbm-segphos, Umicore for generous support in
supplying the palladium and rhodium complexes, and Central
Glass Co., Ltd. for the gift of trifluoromethanesulfonic anhydride
and 1,1,1,3,3,3-hexafluoro-2-propanol.
This absolute configuration is consistent with
a plausible
enantioselection mechanism of the cationic rhodium(I)/(R)-
segphos complex-catalyzed [2+2+2] cycloaddition of 1b with 2b
(Figure S2).
Keywords: chiral triptycenes • cyclic alkenes • enantioselective
synthesis • rhodium • [2+2+2] cycloaddition
[1]
For recent reviews, see: a) C.-F. Chen, Y.-X. Ma, Z. Meng, Synlett
2015, 26, 6; b) C.-F. Chen, Y.-X. Ma, Iptycenes Chemistry, Springer-
Verlag, Berlin Heidelberg, 2013; c) Y. Jiang, C.-F. Chen, Eur. J. Org.
Chem. 2011, 2011, 6377; d) L. Zhao, Z. Li, T. Wirth, Chem. Lett. 2010,
39, 658.
[2]
[3]
For a review, see: J. H. Chong, M. J. MacLachlan, Chem. Soc. Rev.
2009, 38, 3301.
For selected examples, see: a) S. De-Botton, S. Cohen, D. Gelman,
Organometallics 2018, 37, 1324; b) I. Kisets, D. Gelman,
Organometallics 2018, 37, 526; c) S. E. Smith, T. Rosendahl, P.
Hofmann, Organometallics 2011, 30, 3643; d) C. Azerraf, D. Gelman,
Chem. Eur. J. 2008, 14, 10364; e) L. Bini, C. Müller, J. Wilting, L. v.
Chrzanowski, A. L. Spek, D. Vogt, J. Am. Chem. Soc. 2007, 129,
12622; f) O. Grossman, C. Azerraf, D. Gelman, Organometallics 2006,
25, 375.
[4]
[5]
For a review, see: T. M. Swager, Acc. Chem. Res. 2008, 41, 1181.
N. Seiki, Y. Shoji, T. Kajitani, F. Ishiwari, A. Kosaka, T. Hikima, M.
Takata, T. Someya, T. Fukushima, Science 2015, 348, 1122.
a) P. D. Bartlett, M. J. Ryan, S. G. Cohen, J. Am. Chem. Soc. 1942, 64,
2649; b) G. Wittig, R. Ludwig, Angew. Chem. 1956, 68, 40; c) H. M.
Walborsky, T. Bohnert, J. Org. Chem. 1968, 33, 3934; d) M. S. Taylor,
T. M. Swager, Org. Lett. 2007, 9, 3695; e) B. VanVeller, D. Robinson, T.
M. Swager, Angew. Chem. Int. Ed. 2012, 51, 1182; Angew. Chem.
2012, 124, 1208; f) S. Umezu, G. Dos Passos Gomes, T. Yoshinaga, M.
Sakae, K. Matsumoto, T. Iwata, I. Alabugin, M. Shindo, Angew. Chem.
Int. Ed. 2017, 56, 1298; Angew. Chem. 2017, 129, 1318; g) T.
Yoshinaga, T. Fujiwara, T. Iwata, M. Shindo, Chem. Eur. J. 2019, 25, 1.
a) F. K. Leung, F. Ishiwari, Y. Shoji, T. Nishikawa, R. Takeda, Y.
Nagata, M. Suginome, Y. Uozumi, Y. M. A. Yamada, T. Fukushima,
ACS Omega 2017, 2, 1930; b) O. Cohen, O. Grossman, L. Vaccaro, D.
Gelman, J. Organomet. Chem. 2014, 750, 13.
Figure 2. Experimental ECD spectra of (+)-5ba (red plain line) and (–)-5ba
(blue plain line) in EtOH (1.0×10–5 M), and theoretical ECD spectrum of
(9S,16R)-5ba (black broken line) calculated by the TD-DFT method at the
wB97XD/6-311G(d) level with IEFPCM (ethanol).
[6]
In summary, we have achieved the highly enantioselective
synthesis of distorted π-extended chiral triptycenes, consisting
of three distinct aromatic rings, with high enantioselectivity (87%
ee) by the cationic rhodium(I)/segphos complex-catalyzed
enantioselective [2+2+2] cycloaddition of 2,2'-di(prop-1-yn-1-yl)-
[7]
[8]
5,5'-bis(trifluoromethyl)-1,1'-biphenyl
with
6-methoxy-1,2-
dihydronaphthalene followed by the diastereoselective Diels-
Alder reaction, and reductive and oxidative aromatization
reactions. Demethoxy derivatives were also synthesized by
demethylation, triflation, and the palladium(0)-catalyzed C-O
bond cleavage sequence. In this synthesis, the use of the
electron-deficient diyne and the electron-rich alkene is crucial to
a) Y. Wada, K. I. Shinohara, T. Ikai, Chem Commun 2019, 55, 11386;
b) T. Ikai, T. Yoshida, S. Awata, Y. Wada, K. Maeda, M. Mizuno, T. M.
Swager, ACS Macro Letters 2018, 7, 364; c) T. Ikai, Y. Wada, S. Awata,
C. Yun, K. Maeda, M. Mizuno, T. M. Swager, Org. Biomol. Chem. 2017,
15, 8440.
[9]
T. Shibata, Y. Kamimura, Tetrahedron: Asymmetry 2015, 26, 41.
suppress
the
undesired
strain-relieving
carbocation
[10] a) N. Harada, Y. Tamai, Y. Takuma, H. Uda, J. Am. Chem. Soc. 1980,
102, 501; b) M. Kuritani, Y. Sakata, F. Oguri, M. Nakagawa, Bull. Chem.
Soc. Jpn. 1973, 46, 605; c) A. Sonoda, F. Ogura, M. Nakagawa, Bull.
Chem. Soc. Jpn. 1962, 35, 853. See also refs 1b and 7b.
rearrangement in the oxidative aromatization step, leading to the
desired triptycene. Additionally, the introduction of the electron-
withdrawing CF3 groups to the triptycenes might stabilize the
distorted triptycene structure. We believe that the present
process would be a useful strategy for the enantioselective
synthesis of chiral triptycenes. Future works will include
functionalization of the thus obtained chiral triptycenes, leading
to chiral ligands.
[11] a) T. Ikai, T. Yoshida, K. I. Shinohara, T. Taniguchi, Y. Wada, T. M.
Swager, J. Am. Chem. Soc. 2019, 141, 4696; b) T. Ikai, N. Nagata, S.
Awata, Y. Wada, K. Maeda, M. Mizuno, T. M. Swager, RSC Advances
2018, 8, 20483. See also refs 7a and 8.
[12] Y. Aida, H. Sugiyama, H. Uekusa, Y. Shibata, K. Tanaka, Org. Lett.
2016, 18, 2672.
[13] For other examples of the transition-metal-catalyzed enantioselective
[2+2+2] cycloaddition reactions of alkynes with cyclic 1,2-disubstituted
alkenes, see: a) Y. Aida, Y. Shibata, K. Tanaka, J. Org. Chem. 2018,
83, 2617; b) T. Shibata, A. Kawachi, M. Ogawa, Y. Kuwata, K.
Tsuchikama, K. Endo, Tetrahedron 2007, 63, 12853; c) S. Ikeda, H.
Kondo, T. Arii, K. Odashima, Chem. Commun. 2002, 2422.
Acknowledgements
This research was supported partly by Grants-in-Aid for
Scientific Research (JP26102004 and JP19H00893) from JSPS
This article is protected by copyright. All rights reserved.