LETTER
2-Nitroso-N-arylanilines from sH Adducts
1527
CDCl3 at 273 K. Mass spectra (EI, 70 eV) were obtained on
an AMD-604 spectrometer. Silica gel Merck 60 (230–400
mesh) was used for column chromatography.
O
NH2
NH2
N
NHAr
NHAr
NHAr
Zn/AcOH
H2 Pd/C
2-Chloro-4-trifluoromethylonitrobenzene20 (2d) and 4-
chloro-2-methoxynitrobenzene21 (2e) were obtained
according to the literature. All other reagents are
Ar = p-Tol
Ar = p-Tol
4b
Cl
Cl
commercially available.
3
4a
Preparation of 2-Nitroso-N-arylanilines 3a–i; General
Procedure
Ar = 4-ClC6H4
H2C(CO2Me)2
AcOH
COOMe
O
reflux
K2CO3
To a cooled solution of t-BuOK (6 mmol, 672 mg) in DMF
(2 mL) was added dropwise at –60 °C a solution of aniline 1
(2 mmol) in DMF (1 mL) and nitroarene 2 (2 mmol) in DMF
(1 mL). The mixture was stirred at this temperature for 2–5
min, and then a cooled mixture of AcOH (1.5 mL) and DMF
(1.5 mL) was added in one portion. The cooling bath was
removed and the mixture was allowed to reach the ambient
temperature, then it was poured into H2O (ca. 50 mL) and
extracted with EtOAc. The extract was washed with H2O
and brine, and dried with Na2SO4. After evaporation, the
crude product mixture was subjected to column
N
N
Cl
N
Ar
Cl
N
Cl
5
6
Scheme 2 Reactions of 2-nitroso-N-arylanilines 3
chromatography (SiO2, hexane–benzene) to obtain products
3a–i. The representative examples of 3 are described below.
3a: Brown solid; mp 124–125 °C. 1H NMR: d = 7.09 (dd,
J = 1.4, 10.2 Hz, 1 H), 7.05 (d, J = 1.7, 8.8 Hz, 1 H), 7.17–
7.24 (m, 2 H), 7.39–7.45 (m, 2 H), 8.68 (br s, 1 H), 11.82 (br
s, 1 H). 13C NMR: d = 114.0, 119.1, 126.1, 130.0, 132.2,
135.0, 140.4 (br), 144.8, 154.9, one signal not observed. MS
(EI): m/z (%) = 268 (7), 266 (11), 251 (66), 249 (100), 237
(18), 235 (26), 201 (22). HRMS (EI): m/z [M]+ calcd for
C12H8ON235Cl2: 266.0014; found: 266.0024.
References and Notes
(1) (a) Terrier, F. Nucleophilic Aromatic Displacement – The
Influence of the Nitro Group; Verlag Chemie: Weinheim,
1991. (b) Chupakhin, O. N.; Charushin, V. N.; van der Plas,
H. C. Nucleophilic Aromatic Substitution of Hydrogen;
Academic Press: San Diego, 1994. (c) Mąkosza, M. Russ.
Chem. Bull. 1996, 45, 491.
3d: Brown solid; mp 96–97 °C (hexane–benzene). 1H NMR:
d = 2.38 (s, 3 H), 6.93 (d, J = 8.6 Hz, 1 H), 7.05 (d, J = 2.0
Hz, 1 H), 7.13 (br d, J = 8.2 Hz, 2 H), 7.23 (br d, J = 8.2 Hz,
2 H), 8.67 (br s, 1 H), 12.08 (br s, 1 H). 13C NMR: d = 114.4,
118.5, 120.2, 124.9, 130.4, 133.4, 136.9, 141.8 (very br),
144.6, 154.9, one signal not observed. MS (EI): m/z (%) =
245 (6), 231 (42), 229 (100), 214 (22), 180 (25). HRMS
(LSI): m/z [M + H]+ calcd for C13H12ON235Cl: 247.0632;
found: 247.0621.
(2) (a) Mąkosza, M.; Winiarski, J. Acc. Chem. Res. 1987, 20,
282. (b) Mąkosza, M.; Wojciechowski, K. Liebigs Ann./
Recl. 1997, 1805. (c) Mąkosza, M.; Kwast, A. J. Phys. Org.
Chem. 1998, 11, 341.
(3) Suwiński, J.; Świerczek, K. Tetrahedron 2001, 57, 1639.
(4) (a) Mąkosza, M.; Staliński, K. Pol. J. Chem. 1999, 73, 151.
(b) Mąkosza, M.; Staliński, K. Tetrahedron 1998, 54, 8797.
(c) Mąkosza, M.; Staliński, K. Chem. Eur. J. 2001, 7, 2025.
(d) Adam, W.; Mąkosza, M.; Zhao, C. G.; Surowiec, M. J.
Org. Chem. 2000, 65, 1099.
(5) (a) Wróbel, Z. Tetrahedron Lett. 1997, 38, 4913.
(b) Wróbel, Z. Tetrahedron 1998, 54, 2607.
(6) Wróbel, Z. Eur. J. Org. Chem. 2000, 521.
(7) Wróbel, Z. Pol. J. Chem. 1998, 72, 2384.
(8) Wróbel, Z. Synlett 2004, 1929.
3f: Brown solid; mp 106–107 °C. 1H NMR (500 MHz,
CDCl3, –15 °C): d = 2.37 (s, 3 H), 3.76 (s, 3 H), 6.35 (d, J =
2.1 Hz, 1 H), 6.57 (dd, J = 2.1, 9.2 Hz, 1 H), 7.17–7.25 (m,
4 H), 8.48 (d, J = 9.2 Hz, 1 H), 12.97 (br s, 1 H). 13C NMR:
d = 20.9, 55.7, 93.5, 109.3, 124.7, 130.2, 133.9, 136.4, 137.7,
142.4, 153.6, 167.0. 15N NMR (GHMBC, CDCl3, d relative
to MeNO2, 273 K): d = –286.5 (N=O), 334 (JNH = 91.9 Hz,
NH). MS (EI): m/z (%) = 242 (16), 241 (15), 225 (100), 210
(15), 196 (15), 182 (21). HRMS (EI): m/z [M]+ calcd for
C14H14O2N2: 242.1055; found: 242.1051.
(9) (a) Wohl, A.; Aue, W. Ber. Dtsch. Chem. Ges. 1901, 34,
2442. (b) Wohl, A. Ber. Dtsch. Chem. Ges. 1903, 36, 4135.
(c) Serebryanyi, S. B. Ukr. Khim. Zh. (Russ. Ed.) 1955, 21,
350.
Reduction of 3d with Zn/AcOH: To a solution of 2-nitroso-
N-(4-tolyl)aniline 3d (0.15 mmol, 37.2 mg) in AcOH (1
mL), powdered Zn (150 mg) was added and the mixture was
stirred at ambient temperature, while monitored by TLC.
After the substrate had disappeared (ca. 1.5 h), the mixture
was diluted with EtOAc (10 mL), filtered, washed with H2O,
sat. NaHCO3 and H2O, and then dried with Na2SO4. The
solvent was evaporated and the crude product was purified
by column chromatography (SiO2, hexane–EtOAc, 5:1) to
give 4a (26.2 mg, 75%).
(10) (a) Stern, M. K.; Hileman, F. D.; Bashkin, J. K. J. Am. Chem.
Soc. 1992, 114, 9237. (b) Beska, E.; Toman, P.; Fiedler, K.;
Hronec, M.; Pinter, J. US Patent 6388136, 2002.
(11) Lipilin, D. L.; Churakov, A. M.; Ioffe, S. L.; Strelenko, Y.
A.; Tartakowsky, V. A. Eur. J. Org. Chem. 1999, 29.
(12) Lemek, T.; Mąkosza, M.; Stephenson, D. S.; Mayr, H.
Angew. Chem. Int. Ed. 2003, 42, 2793.
(13) Błażej, S.; Kwast, A.; Mąkosza, M. Tetrahedron Lett. 2004,
45, 3193.
(14) (a) Bartoli, G.; Rosini, G. Synthesis 1976, 270. (b) Bartoli,
G.; Leardini, R.; Medici, A.; Rosini, G. J. Chem. Soc.,
Perkin Trans. 1 1978, 692.
4a: Brown solid; mp 65–66 °C(hexane) [Lit.22 66.5–67.5 °C
(PE)]. 1H NMR: d = 2.68 (s, 3 H), 3.64 (br s, 2 H), 5.10 (br
s, 1 H), 6.69 (d, J = 8.4 Hz, 1 H), 6.72–6.76 (m, 2 H), 6.89
(dd, J = 2.3, 8.4 Hz, 1 H), 7.04–7.08 (m, 3 H). 13C NMR:
d = 20.6, 116.9, 117.0, 121.7, 123.7, 123.8, 129.9, 130.0,
131.5, 138.6, 141.3. MS (EI): m/z (%) = 232 (100), 217 (59).
HRMS (EI): m/z [M]+ calcd for C13H13N235Cl: 232.0767;
found: 232.0772.
(15) Melting points are uncorrected. 1H and 13C NMR spectra
were recorded on a Varian Mercury 400 instrument (400
MHz for 1H NMR and 100 MHz for 13C NMR spectra) in
CDCl3. Chemical shifts (d) are expressed in ppm referred to
TMS, and coupling constants are given in Hz. 15N GHMBC
experiment was performed on a Bruker 500 instrument in
Synlett 2007, No. 10, 1525–1528 © Thieme Stuttgart · New York