Foundation for a Graduate Research Fellowship in Functional
Materials.
References
1 M. Sawamoto and M. Kamigaito, Kobunshi Ronbunshu, 1997, 54, 875–
885.
2 T. E. Patten and K. Matyjaszewski, Adv. Mater., 1998, 10, 1–15.
3 T. E. Patten and K. Matyjaszewski, Acc. Chem. Res., 1999, 32, 895–903.
4 M. Kamigaito, T. Ando and M. Sawamoto, Chem. Rev., 2001, 101,
3689–3745.
5 K. Matyjaszewski and J. Xia, Chem. Rev., 2001, 101, 2921–2990.
6 A. T. Levy, M. M. Olmstead and T. E. Patten, Inorg. Chem., 2000, 39,
1628–1634.
7 Y. Inoue and K. Matyjaszewski, Macromolecules, 2003, 36, 7432–7438.
8 J. M. Goodwin, M. M. Olmstead and T. E. Patten, J. Am. Chem. Soc.,
2004, 126, 14352–14353.
Scheme 1 Synthetic transformation pathways for obtaining complex 1
and related complexes.
9 Y. Inoue and K. Matyjaszewski, Macromolecules, 2004, 37, 4014–4021.
10 T. E. Patten, C. Troeltzsch and M. M. Olmstead, Inorg. Chem., 2005,
44, 9197–9206.
and one equivalent of CuCl was added to Na(PETAEA) in each.
The solubility of Na(PETAEA) in these solvents decreased in
the order: acetonitrile, acetone, THF and toluene. In acetonitrile
and acetone red–orange Cu(PETAEA) formed, and in THF a
mixture of Cu(PETAEA) and complex 1 formed as described
above. In toluene very little product formed, but what did form
was the yellow complex 1. These observations were consistent
with the dinuclear complex formation hypothesis described above.
Similarly, complex 3 was formed as the only product in the
attempted synthesis of Cu(PENAEA) in acetonitrile because
Na(PENAEA) was sparingly soluble in this solvent.
Secondly, CuCl was added to previously formed Cu(PETAEA).
Cu(PETAEA) was dissolved in acetonitrile and mixed with an
additional equivalent of CuCl. The solution changed from red–
orange to yellow as all of the Cu(PETAEA) was converted into
complex 1. Thirdly, it was demonstrated through the synthesis of
complex 2 that addition of more than one equivalent of CuCl
during complexation will form the dinuclear complex exclusively.
All of these results indicated that the ligand-bridged dinuclear
copper(I) complex is quite stable and will form under conditions
in which CuCl is present along with the monometallic complex,
as a result of either the reaction stoichiometry or the insolubility
of the sodium salt of the ligand.
11 P. Pyykko¨, Chem. Rev., 1997, 97, 597–636.
12 K. H. Nakagawa, C. Inouye, B. Hedman, M. Karin, T. D. Tullius and
K. O. Hodgson, J. Am. Chem. Soc., 1991, 113, 3621–3623.
13 H. Bertagnolli and W. Kaim, Angew. Chem., Int. Ed. Engl., 1995, 34,
771–773.
14 I. J. Pickering, G. N. George, C. T. Dameron, B. Kurz, D. R. Winge and
I. G. Dance, J. Am. Chem. Soc., 1993, 115, 9498–9505.
15 P. K. Mehrotra and R. Hoffmann, Inorg. Chem., 1978, 17, 2187–2189.
16 K. M. Merz, Jr. and R. Hoffmann, Inorg. Chem., 1988, 27, 2120–
2127.
17 F. A. Cotton, X. Feng, M. Matusz and R. Poli, J. Am. Chem. Soc.,
1988, 110, 7077–7083.
18 C. S. Arcus, J. L. Wilkinson, C. Mealli, T. J. Marks and J. A. Ibers,
J. Am. Chem. Soc., 1974, 96, 7564–7565.
19 C. Mealli, C. S. Arcus, J. L. Wilkinson, T. J. Marks and J. A. Ibers,
J. Am. Chem. Soc., 1976, 98, 711–718.
20 S. Seth, A. K. Das and T. C. W. Mak, Acta Crystallogr., Sect. C, 1995,
C51, 2529–2532.
21 C.-S. Hwang, M. M. Olmstead, X. He and P. P. Power, J. Chem. Soc.,
Dalton Trans., 1998, 2599–2600.
22 A. Heine, R. Herbst-Irmer and D. Stalke, J. Chem. Soc., Chem.
Commun., 1993, 1729–1731.
23 M. Krieger, S. Schlecht, K. Harms and K. Dehnicke, Z. Anorg. Allg.
Chem., 1998, 624, 1565–1567.
24 D. W. Widlicka, E. H. Wong, G. R. Weisman, K.-C. Lam, R. D.
Sommer, C. D. Incarvito and A. L. Rheingold, Inorg. Chem. Commun.,
2000, 3, 648–652.
25 A. A. D. Tulloch, A. A. Danapoulos, S. Kleinhenz, M. E. Light, M. B.
Hursthouse and G. Eastham, Organometallics, 2001, 20, 2027–2031.
26 C. He, J. L. DuBois, B. Hedman, K. O. Hodgson and S. J. Lippard,
Angew. Chem., Int. Ed., 2001, 40, 1484–1487.
27 C. Harding, V. McKee and J. Nelson, J. Am. Chem. Soc., 1991, 113,
9684–9685.
28 Z. Li, S. T. Barry and R. G. Gordon, Inorg. Chem., 2005, 1728–1735.
29 W.-H. Chan, S.-M. Peng and C.-M. Che, J. Chem. Soc., Dalton Trans.,
1998, 2867–2871.
30 J. S. Bradley, R. L. Pruett, E. Hill, G. B. Ansell, M. E. Leonowicz and
M. A. Modrick, Organometallics, 1982, 1, 748–752.
31 Z. Mao, H.-Y. Chao, Z. Hui, C.-M. Che, W.-F. Fu, K.-K. Cheung and
N. Zhu, Chem.–Eur. J., 2003, 9, 2885–2897.
32 E. C. Constable, T. Kulke, M. Neuburger and M. Zehnder, Chem.
Commun., 1997, 489–490.
33 E. C. Constable, A. J. Edwards, M. J. Hannon and P. R. Raithby,
J. Chem. Soc., Chem. Commun., 1994, 1991–1992.
34 C. He and S. J. Lippard, Inorg. Chem., 2000, 39, 5225–5231.
35 R. R. Gagne, R. P. Kreh, J. A. Dodge, R. E. Marsh and M. McCool,
Inorg. Chem., 1982, 21, 254–261.
Conclusions
In summary, dinuclear copper(I) complexes were prepared using
PETAEA and its derivatives, and these compounds featured a four
coordinate N4Cu center, a two coordinate NCuCl center, and a
˚
metal–metal distance within the range of 2.6572(8) to 2.6903(3) A.
The copper–copper distance and the structural features of the
complex were consistent with a weak attraction between the two
closed shell metal centers, and DFT calculations support this idea.
The complexes apparently formed in a two-step process with the
formation of the tetracoordinate mononuclear complex preceding
the coordination of a second equivalent of CuCl to the lone pair
of the sulfonamidate ligand.
36 K. T. Potts, M. Keshavarz-K, F. S. Tham, H. D. Abruna and C. Arana,
Inorg. Chem., 1993, 32, 4450–4456.
37 K. Johnson and J. W. Steed, J. Chem. Soc., Dalton Trans., 1998, 2601–
2602.
38 M. Maekawa, M. Munakata, S. Kitagawa, T. Kuroda-Sowa, Y. Suenaga
and M. Yamamoto, Inorg. Chim. Acta, 1998, 271, 129–136.
Acknowledgements
We thank the ACS Petroleum Research Fund (35150-AC7) for
support of this research. JMG acknowledges the Tyco Electronics
This journal is
The Royal Society of Chemistry 2007
Dalton Trans., 2007, 3086–3092 | 3091
©